首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4437篇
  免费   379篇
  国内免费   2篇
  4818篇
  2024年   6篇
  2023年   46篇
  2022年   98篇
  2021年   166篇
  2020年   92篇
  2019年   137篇
  2018年   149篇
  2017年   98篇
  2016年   204篇
  2015年   308篇
  2014年   335篇
  2013年   333篇
  2012年   436篇
  2011年   451篇
  2010年   236篇
  2009年   205篇
  2008年   274篇
  2007年   284篇
  2006年   211篇
  2005年   187篇
  2004年   144篇
  2003年   122篇
  2002年   114篇
  2001年   20篇
  2000年   14篇
  1999年   19篇
  1998年   16篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1962年   2篇
  1961年   3篇
  1960年   3篇
  1955年   4篇
  1911年   2篇
排序方式: 共有4818条查询结果,搜索用时 15 毫秒
61.
Welsh JQ  Bellwood DR 《PloS one》2012,7(3):e33187
Although a few pelagic species exhibit regional endothermy, most fish are regarded as ectotherms. However, we document significant regional endothermy in a benthic reef fish. Individual steephead parrotfish, Chlorurus microrhinos (Labridae, formerly Scaridae) were tagged and their internal temperatures were monitored for a 24 h period using active acoustic telemetry. At night, on the reef, C. microrhinos were found to maintain a consistent average peritoneal cavity temperature 0.16 ± 0.005 °C (SE) warmer than ambient. Diurnal internal temperatures were highly variable for individuals monitored on the reef, while in tank-based trials, peritoneal cavity temperatures tracked environmental temperatures. The mechanisms responsible for a departure of the peritoneal cavity temperature from environmental temperature occurred in C. microrhinos are not yet understood. However, the diet and behavior of the species suggests that heat in the peritoneal cavity may result primarily from endogenous thermogenesis coupled with physiological heat retention mechanisms. The presence of limited endothermy in C. microrhinos indicates that a degree of uncertainty may exist in the manner that reef fish respond to their thermal environment. At the very least, they do not always appear to respond to environmental temperatures as neutral thermal vessels and do display limited, but significant, visceral warming.  相似文献   
62.
Summary   The Australian irrigation industry diverts significant volumes of water from our rivers, and as such, may also divert and entrain riverine fish. Although it is widely acknowledged that our native fish fauna have been greatly affected by a variety of anthropogenic changes, little is known about the extent or significance of fish entrainment in irrigation systems. This paper presents results from a preliminary investigation into the diversion of fish into irrigation channels undertaken in the Goulburn-Murray Irrigation Network, Victoria, Australia. The case study and our knowledge of the life-history strategies of the Basin's fish fauna suggest that the loss of native fish into irrigation networks may be a substantial problem, which, up until recently, has been largely ignored. We strongly suggest that the impact of diversions on native fish populations requires urgent further investigation and quantification, through the cooperation of water management authorities and fish biologists.  相似文献   
63.
Single particle reconstruction using the random conical tilt data collection geometry is a robust method for the initial determination of macromolecular structures by electron microscopy. Unfortunately, the broad adoption of this powerful approach has been limited by the practical challenges inherent in manual data collection of the required pairs of matching high and low tilt images (typically 60 degrees and 0 degrees). The microscopist is obliged to keep the imaging area centered during tilting as well as to maintain accurate focus in the tilted image while minimizing the overall electron dose, a challenging and time consuming process. To help solve these problems, we have developed an automated system for the rapid acquisition of accurately aligned and focused tilt pairs. The system has been designed to minimize the dose incurred during alignment and focusing, making it useful in both negative stain and cryo-electron microscopy. The system includes a feature for montaging untilted images to ensure that all of the particles in the tilted image may be used in the reconstruction.  相似文献   
64.
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.  相似文献   
65.
The use of computational modeling algorithms to guide the design of novel enzyme catalysts is a rapidly growing field. Force-field based methods have now been used to engineer both enzyme specificity and activity. However, the proportion of designed mutants with the intended function is often less than ten percent. One potential reason for this is that current force-field based approaches are trained on indirect measures of function rather than direct correlation to experimentally-determined functional effects of mutations. We hypothesize that this is partially due to the lack of data sets for which a large panel of enzyme variants has been produced, purified, and kinetically characterized. Here we report the kcat and KM values of 100 purified mutants of a glycoside hydrolase enzyme. We demonstrate the utility of this data set by using machine learning to train a new algorithm that enables prediction of each kinetic parameter based on readily-modeled structural features. The generated dataset and analyses carried out in this study not only provide insight into how this enzyme functions, they also provide a clear path forward for the improvement of computational enzyme redesign algorithms.  相似文献   
66.
Sirex noctilio F. (Hymenoptera: Siricidae) is a woodwasp of pine trees that has recently invaded and established in North American forests. Although S. noctilio has had a limited impact in North America to date, there is some concern that it could have a significant impact on pine plantations, especially in the southeastern U.S.A. Moreover, there are few data on the flight capacity of male S. noctilio. We found no association between parasitism by D. siricidicola and whether or not S. noctilio initiated flight on the flight mill. Male wasps that were parasitized by nematodes were heavier than non-parasitized males, but there was no significant difference in mass between parasitized and non-parasitized females. We also examined the flight capacity of male and female S. noctilio in relation to nematode parasitism, body mass, temperature (for only males), and diel period. Body mass, temperature, and diel period affected flight in S. noctilio such that wasps were generally observed to fly faster, farther, and more frequently if they were heavier, flying at warmer temperatures, and flying during the photoperiod. The fact that nematode-parasitized male wasps were found to fly farther than the non-parasitized males is consistent with the hypothesis that nematode parasitism does not negatively affect the flight capacity of S. noctilio.  相似文献   
67.
We have mapped quantitative trait loci (QTL) responsible for natural variation in light and hormone response between the Cape Verde Islands (Cvi) and Landsberg erecta (Ler) accessions of Arabidopsis thaliana using recombinant inbred lines (RILs). Hypocotyl length was measured in four light environments: white, blue, red, and far-red light and in the dark. In addition, white light plus gibberellin (GA) and dark plus the brassinosteroid biosynthesis inhibitor brassinazole (BRZ) were used to detect hormone effects. Twelve QTL were identified that map to loci not previously known to affect light response, as well as loci where candidate genes have been identified from known mutations. Some QTL act in all environments while others show genotype-by-environment interaction. A global threshold was established to identify a significant epistatic interaction between two loci that have few main effects of their own. LIGHT1, a major QTL, has been confirmed in a near isogenic line (NIL) and maps to a new locus with effects in all light environments. The erecta mutation can explain the effect of the HYP2 QTL in the blue, BRZ, and dark environments, but not in far-red. LIGHT2, also confirmed in an NIL, has effects in white and red light and shows interaction with GA. The phenotype and map position of LIGHT2 suggest the photoreceptor PHYB as a candidate gene. Natural variation in light and hormone response thus defines both new genes and known genes that control light response in wild accessions.  相似文献   
68.
69.
The delivery of proteins instead of DNA into plant cells allows for a transient presence of the protein or enzyme that can be useful for biochemical analysis or genome modifications. This may be of particular interest for genome editing, because it can avoid DNA (transgene) integration into the genome and generate precisely modified “nontransgenic” plants. In this work, we explore direct protein delivery to plant cells using mesoporous silica nanoparticles (MSNs) as carriers to deliver Cre recombinase protein into maize (Zea mays) cells. Cre protein was loaded inside the pores of gold-plated MSNs, and these particles were delivered by the biolistic method to plant cells harboring loxP sites flanking a selection gene and a reporter gene. Cre protein was released inside the cell, leading to recombination of the loxP sites and elimination of both genes. Visual selection was used to select recombination events from which fertile plants were regenerated. Up to 20% of bombarded embryos produced calli with the recombined loxP sites under our experimental conditions. This direct and reproducible technology offers an alternative for DNA-free genome-editing technologies in which MSNs can be tailored to accommodate the desired enzyme and to reach the desired tissue through the biolistic method.Introducing DNA-modifying enzymes rather than DNA-based expression cassettes is an attractive alternative for genetic engineering and genome-editing applications such as gene targeting or site-specific recombination. It offers a transient presence of the enzymes, and the process can be coordinated with high levels of enzymatic activity at the time and sites of the desired DNA recombination events. Many DNA-metabolizing enzymes (endonucleases, transposases, and topoisomerases), when delivered in an unrestrained manner, show adverse effects on cell viability. Delivery in the form of protein or RNA may help to mitigate these effects (Cui et al., 2011; Sander et al., 2011; Watanabe et al., 2012). In addition, by introducing proteins, one can avoid the need to remove the protein-encoding DNA fragments from the engineered plant genome. This may help shorten the time from laboratory to field for future improved germplasms.Site-specific recombinases such as Cre or FLP have been widely used in genetic engineering applications (Sorrell and Kolb, 2005). The 38-kD Cre enzyme specifically binds to and recombines the 34-bp loxP sequences, allowing the removal, integration, or inversion of the DNA fragment flanked by these sequences (for review, see Wang et al., 2011). There are a number of established methodologies designed to provide the Cre recombinase activity for site-specific recombination in eukaryotic cells that do not involve the delivery of DNA. These methods include lipofection (Baubonis and Sauer, 1993), microinjection of protein or mRNA (de Wit et al., 1998; Luckow et al., 2009), electroporation of protein or mRNA (Kolb and Siddell, 1996; Ponsaerts et al., 2004), or using modified microorganisms for Cre delivery to their host cells (Vergunst et al., 2000; Koshy et al., 2010). Another strategy that has been used is the incubation or injection of tissues/cell cultures with cell-permeant Cre, a modified Cre protein fused to protein transduction domains or cell-penetrating peptides (Jo et al., 2001; Will et al., 2002; Lin et al., 2004; Nolden et al., 2006).For biotechnological applications in plant sciences, protein delivery systems have been developed, including microinjection (Wymer et al., 2001), protein immobilization to gold particles (Wu et al., 2011), and protein transduction through cell-penetrating peptides (for review, see Chugh et al., 2010). The cell-penetrating peptides were shown to enable intracellular delivery of the Cre recombinase protein to rice (Oryza sativa) callus tissues (Cao et al., 2006). Nanobiotechnology is offering an attractive alternative, since nanoparticles can be precisely tailored to deliver a particular biomolecule to the cell, tissue, or organism of interest when needed (for review, see Du et al., 2012). Mesoporous silica nanoparticles (MSNs) are particularly suited for this purpose. These porous nanoparticles are formed by a matrix of well-ordered pores that confers high loading capacity of molecules like proteins (for review, see Popat et al., 2011). Additionally, surfaces of MSNs can be readily modified, permitting the customization of nanoparticles to particular experimental needs (for review, see Trewyn et al., 2007). In our previous studies, it was shown that MSNs can be used for the codelivery of DNA and chemicals (Torney et al., 2007) as well as DNA and proteins (Martin-Ortigosa et al., 2012a) to plant cells via biolistics. To improve MSN performance as a projectile, gold plating of MSN surfaces was performed, increasing nanoparticle density and, subsequently, the ability to pass through the plant cell wall upon bombardment (Martin-Ortigosa et al., 2012b).In this work, the Cre recombinase enzyme was loaded into the pores of gold-plated MSNs and delivered through the biolistic method to maize (Zea mays) cells containing loxP sites integrated into chromosomal DNA (Lox-corn; Fig. 1A). Lox-corn expressed the glyphosate acetyltransferase gene (gat) and the Anemonia majano cyan fluorescent protein gene (AmCyan1) flanked by loxP sites. The MSN-released Cre enzyme recombined the loxP sites, thus removing the DNA fragment flanked by these sequences. Such excisions led to the expression of a variant of Discosoma sp. red fluorescent protein gene (DsRed2) and the loss of the selectable marker gene (Fig. 1A). Visual selection was used to recover the recombination events. Subsequently, fertile maize plants were regenerated from the recombined events and DNA analyses confirmed the recombination events. To our knowledge, this is the first time that MSNs have been used for the delivery of a functional recombinase into plant tissues, leading to successful genome editing.Open in a separate windowFigure 1.A, Schematic representation of the MSN-based bombardment technology. Cre protein is loaded into the pores of gold-plated MSN (Cre-6x-MSN) and subsequently bombarded onto immature embryos of a transgenic maize line carrying a loxP construct (Lox-corn). The parental transgenic Lox-corn tissues are blue fluorescence and herbicide resistant because they harbor a cassette with the glyphosate acetyltransferase (gat) selection gene and the AmCyan1 (cyan) marker gene flanked by the loxP sites. The DsRed2 (dsred) gene for the expression of a red fluorescent protein is placed downstream of the cassette. Once Cre recombinase is released inside the cell, it performs the recombination, excising gat-AmCyan1 genes and leading to the expression of the DsRed2 gene, switching the cell fluorescence pattern from blue to red. P, Promoter; T, terminator. UBINTRF, CYANF, and DSRED2R are primers for DNA analysis. B, Transmission electron microscope image showing the typical hexagonal shape and the well-ordered pore structure of a 6x-MSN. C, Scanning electron microscope image showing gold nanoparticle deposition (white dots) in all surfaces of 6x-MSN. D, Western blot showing Cre protein loading and release dynamics from 6x-MSN. The protein loading is almost immediate, even though some protein can be detected in the buffer even after 1 h of loading. For the release, some Cre protein can be observed after 24 h of incubation. Most of the protein remains in the 6x-MSN pellet. C+, 400 ng of Cre protein; Empty, a lane with no protein loading. The bands observed in the Empty lane were the spillover from the neighboring Pellet lane, which represents Cre-loaded 6x-MSN after the release experiment resuspended in Laemmli loading buffer (see “Materials and Methods”).  相似文献   
70.
Bacterial secretion systems often employ molecular chaperones to recognize and facilitate export of their substrates. Recent work demonstrated that a secreted component of the type VI secretion system (T6SS), haemolysin co‐regulated protein (Hcp), binds directly to effectors, enhancing their stability in the bacterial cytoplasm. Herein, we describe a quantitative cellular proteomics screen for T6S substrates that exploits this chaperone‐like quality of Hcp. Application of this approach to the Hcp secretion island I‐encoded T6SS (H1‐T6SS) of Pseudomonas aeruginosa led to the identification of a novel effector protein, termed Tse4 (t ype VI s ecretion e xported 4), subsequently shown to act as a potent intra‐specific H1‐T6SS‐delivered antibacterial toxin. Interestingly, our screen failed to identify two predicted H1‐T6SS effectors, Tse5 and Tse6, which differ from Hcp‐stabilized substrates by the presence of toxin‐associated PAAR‐repeat motifs and genetic linkage to members of the valine‐glycine repeat protein G (vgrG) genes. Genetic studies further distinguished these two groups of effectors: Hcp‐stabilized effectors were found to display redundancy in interbacterial competition with respect to the requirement for the two H1‐T6SS‐exported VgrG proteins, whereas Tse5 and Tse6 delivery strictly required a cognate VgrG. Together, we propose that interaction with either VgrG or Hcp defines distinct pathways for T6S effector export.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号