首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4441篇
  免费   377篇
  国内免费   2篇
  4820篇
  2024年   6篇
  2023年   46篇
  2022年   98篇
  2021年   166篇
  2020年   92篇
  2019年   137篇
  2018年   149篇
  2017年   98篇
  2016年   204篇
  2015年   308篇
  2014年   335篇
  2013年   333篇
  2012年   436篇
  2011年   451篇
  2010年   236篇
  2009年   207篇
  2008年   274篇
  2007年   284篇
  2006年   211篇
  2005年   187篇
  2004年   144篇
  2003年   122篇
  2002年   114篇
  2001年   20篇
  2000年   14篇
  1999年   19篇
  1998年   16篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1962年   2篇
  1961年   3篇
  1960年   3篇
  1955年   4篇
  1911年   2篇
排序方式: 共有4820条查询结果,搜索用时 15 毫秒
101.
The influenza virus M2 protein is a well-validated yet underexploited proton-selective ion channel essential for influenza virus infectivity. Because M2 is a toxic viral ion channel, existing M2 inhibitors have been discovered through live virus inhibition or medicinal chemistry rather than M2-targeted high-throughput screening (HTS), and direct measurement of its activity has been limited to live cells or reconstituted lipid bilayers. Here, we describe a cell-free ion channel assay in which M2 ion channels are incorporated into virus-like particles (VLPs) and proton conductance is measured directly across the viral lipid bilayer, detecting changes in membrane potential, ion permeability, and ion channel function. Using this approach in high-throughput screening of over 100,000 compounds, we identified 19 M2-specific inhibitors, including two novel chemical scaffolds that inhibit both M2 function and influenza virus infectivity. Counterscreening for nonspecific disruption of viral bilayer ion permeability also identified a broad-spectrum antiviral compound that acts by disrupting the integrity of the viral membrane. In addition to its application to M2 and potentially other ion channels, this technology enables direct measurement of the electrochemical and biophysical characteristics of viral membranes.  相似文献   
102.
Adenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo. To understand the discrepancy between efficacy of FVII binding to hexon and its apparently poor capacity for supporting virus cell entry, we analyzed the HAdv5-FVII complex by using high-resolution cryo-electron microscopy (cryo-EM) followed by molecular dynamic flexible fitting (MDFF) simulations. The results indicate that although hexon amino acids T423, E424, and T425, identified earlier as critical for FX binding, are also involved in mediating binding of FVII, the FVII GLA domain sits within the surface-exposed hexon trimer depression in a different orientation from that found for FX. Furthermore, we found that when bound to hexon, two proximal FVII molecules interact via their serine protease (SP) domains and bury potential heparan sulfate proteoglycan (HSPG) receptor binding residues within the dimer interface. In contrast, earlier cryo-EM studies of the Ad-FX interaction showed no evidence of dimer formation. Dimerization of FVII bound to Ad may be a contributing mechanistic factor for the differential infectivity of Ad-FX and Ad-FVII complexes, despite high-affinity binding of both these coagulation factors to the virus.  相似文献   
103.
We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission.  相似文献   
104.
Huntington disease (HD) is caused by an expanded polyglutamine (poly(Q)) repeat near the N terminus of the huntingtin (htt) protein. Expanded poly(Q) facilitates formation of htt aggregates, eventually leading to deposition of cytoplasmic and intranuclear inclusion bodies containing htt. Flanking sequences directly adjacent to the poly(Q) domain, such as the first 17 amino acids on the N terminus (Nt17) and the polyproline (poly(P)) domain on the C-terminal side of the poly(Q) domain, heavily influence aggregation. Additionally, htt interacts with a variety of membraneous structures within the cell, and Nt17 is implicated in lipid binding. To investigate the interaction between htt exon1 and lipid membranes, a combination of in situ atomic force microscopy, Langmuir trough techniques, and vesicle permeability assays were used to directly monitor the interaction of a variety of synthetic poly(Q) peptides with different combinations of flanking sequences (KK-Q35-KK, KK-Q35-P10-KK, Nt17-Q35-KK, and Nt17-Q35-P10-KK) on model membranes and surfaces. Each peptide aggregated on mica, predominately forming extended, fibrillar aggregates. In contrast, poly(Q) peptides that lacked the Nt17 domain did not appreciably aggregate on or insert into lipid membranes. Nt17 facilitated the interaction of peptides with lipid surfaces, whereas the poly(P) region enhanced this interaction. The aggregation of Nt17-Q35-P10-KK on the lipid bilayer closely resembled that of a htt exon1 construct containing 35 repeat glutamines. Collectively, this data suggests that the Nt17 domain plays a critical role in htt binding and aggregation on lipid membranes, and this lipid/htt interaction can be further modulated by the presence of the poly(P) domain.  相似文献   
105.
The live attenuated simian immunodeficiency virus (SIV) SIVmac239Δnef is the most effective SIV/human immunodeficiency virus (HIV) vaccine in preclinical testing. An understanding of the mechanisms responsible for protection may provide important insights for the development of HIV vaccines. Leveraging the uniquely restricted genetic diversity of Mauritian cynomolgus macaques, we performed adoptive transfers between major histocompatibility complex (MHC)-matched animals to assess the role of cellular immunity in SIVmac239Δnef protection. We vaccinated and mock vaccinated donor macaques and then harvested between 1.25 × 109 and 3.0 × 109 mononuclear cells from multiple tissues for transfer into 12 naive recipients, followed by challenge with pathogenic SIVmac239. Fluorescently labeled donor cells were detectable for at least 7 days posttransfer and trafficked to multiple tissues, including lung, lymph nodes, and other mucosal tissues. There was no difference between recipient macaques'' peak or postpeak plasma viral loads. A very modest difference in viral loads during the chronic phase between vaccinated animal cell recipients and mock-vaccinated animal cell recipients did not reach significance (P = 0.12). Interestingly, the SIVmac239 challenge virus accumulated escape mutations more rapidly in animals that received cells from vaccinated donors. These results may suggest that adoptive transfers influenced the course of infection despite the lack of significant differences in the viral loads among animals that received cells from vaccinated and mock-vaccinated donor animals.  相似文献   
106.
Bacillus thuringiensis is an important source of insect resistance traits in commercial crops. In an effort to prolong B. thuringiensis trait durability, insect resistance management programs often include combinations of insecticidal proteins that are not cross resistant or have demonstrable differences in their site of action as a means to mitigate the development of resistant insect populations. In this report, we describe the activity spectrum of a novel B. thuringiensis Cry protein, Cry1Bh1, against several lepidopteran pests, including laboratory-selected B. thuringiensis-resistant strains of Ostrinia nubilalis and Heliothis virescens and progeny of field-evolved B. thuringiensis-resistant strains of Plutella xylostella and Spodoptera frugiperda. Cry1Bh1 is active against susceptible and B. thuringiensis-resistant colonies of O. nubilalis, P. xylostella, and H. virescens in laboratory diet-based assays, implying a lack of cross-resistance in these insects. However, Cry1Bh1 is not active against susceptible or Cry1F-resistant S. frugiperda. Further, Cry1Bh1 does not compete with Cry1Fa or Cry1Ab for O. nubilalis midgut brush border membrane binding sites. Cry1Bh1-expressing corn, while not completely resistant to insect damage, provided significantly better leaf protection against Cry1Fa-resistant O. nubilalis than did Cry1Fa-expressing hybrid corn. The lack of cross-resistance with Cry1Ab and Cry1Fa along with independent membrane binding sites in O. nubilalis makes Cry1Bh1 a candidate to further optimize for in-plant resistance to this pest.  相似文献   
107.
The group 1 pathogenesis-related (PR-1) proteins have long been considered hallmarks of hypersensitive response/defense pathways in plants, but their biochemical functions are still obscure despite resolution of the NMR/X-ray structures of several PR-1-like proteins, including P14a (the prototype PR-1). We report here the characterization of two basic PR-1 proteins (PR-1-1 and PR-1-5) recently identified from hexaploid wheat (Triticum aestivum). Both proteins were expressed in Pichia pastoris as a single major species of ∼15 kDa. Sequence identity of the expressed PR-1 proteins was verified by MALDI-TOF/TOF analysis. Accumulation of the native PR-1-5 protein in pathogen-challenged wheat was confirmed by protein gel blot analysis. Low-temperature SDS-PAGE and yeast two-hybrid assays revealed that PR-1-1 exists primarily as a monomer whereas PR-1-5 forms homodimers. Both PR-1 proteins are resistant to proteases compared to bovine serum albumin, but PR-1-1 shows resistance mainly to subtilisin and protease K (serine proteases) whereas PR-1-5 shows resistance to subtilisin, protease K and papain (a cysteine protease). Site-specific mutations at the five putative active sites in the PR-1 domain all affected dimerization, with the mutations at Glu-72 and Glu-102 (in the PR-1-5 numeration) also diminishing protease resistance. Sequence analysis revealed that the Glu-72 and Glu-102 residues are located in motif-like sequences that are conserved in both PR-1 and the human apoptosis-related caspase proteins. These findings prompt us to examine the function of PR-1 for a role in protease-mediated programmed cell death pathways in plants.  相似文献   
108.
In this study we examined the impact of systemic treatment with the long-acting brain penetrant β2-adrenoceptor agonist clenbuterol on NFκB activity and IκB expression in rat brain. Clenbuterol decreased NFκB activity (p65 DNA binding) in nuclear extracts prepared from rat cortex and hippocampus for up to 8 h following a single treatment. This was accompanied by increased expression of IκBα mRNA and protein. The temporal increase in IκB protein expression paralleled the suppression of NFκB activity, suggesting that IκBα mediates the suppression NFκB activity observed. These actions of clenbuterol were prevented by pre-treatment with the non-selective β-adrenoceptor antagonist propranolol, the β2-adrenoceptor antagonist ICI-118,551, but not the β1-adrenoceptor antagonist metoprolol, suggesting that the effects of clenbuterol on IκBα expression and NFκB activity are mediated specifically by the β2-adrenoceptor. In addition, the actions of clenbuterol were mimicked by systemic administration of another highly selective long-acting β2-adrenoceptor agonist formoterol. As neurodegenerative diseases are associated with inflammation we determined if clenbuterol could suppress NFκB activation that occurs in response to an inflammatory stimulus. In this regard we demonstrate that clenbuterol inhibited IκB phosphorylation and IκB degradation and inhibited NFκB activity in hippocampus and cortex of rats following a central injection of the inflammagen bacterial lipopolysaccharide (LPS). In tandem, clenbuterol blocked expression of the NFκB-inducible genes TNF-α and ICAM-1 following LPS administration. Our finding that clenbuterol and formoterol inhibit NFκB activity in the CNS further supports the idea that β2-adrenoceptors may be an attractive target for treating neuroinflammation and combating inflammation-related neurodegeneration.  相似文献   
109.
Membrane adsorbers may be a viable alternative to the packed‐bed chromatography for clearance of virus, host cell proteins, DNA, and other trace impurities. However, incorporation of membrane adsorbers into manufacturing processes has been slow due to the significant cost associated with obtaining regulatory approval for changes to a manufacturing process. This study has investigated clearance of minute virus of mice (MVM), an 18–22 nm parvovirus recognized by the FDA as a model viral impurity. Virus clearance was obtained using three commercially available anion exchange membrane adsorbers: Sartobind Q®, Mustang Q®, and ChromaSorb®. Unlike earlier studies that have focused on a single or few operating conditions, the aim here was to determine the level of virus clearance under a range of operating conditions that could be encountered in industry. The effects of varying pH, NaCl concentration, flow rate, and other competing anionic species present in the feed were determined. The removal capacity of the Sartobind Q and Mustang Q products, which contain quaternary ammonium based ligands, is sensitive to feed conductivity and pH. At conductivities above about 20 mS/cm, a significant decrease in capacity is observed. The capacity of the ChromaSorb product, which contains primary amine based ligands, is much less affected by ionic strength. However the capacity for binding MVM is significantly reduced in the presence of phosphate ions. These differences may be explained in terms of secondary hydrogen bonding interactions that could occur with primary amine based ligands. Biotechnol. Bioeng. 2013; 110: 491–499. © 2012 Wiley Periodicals, Inc.  相似文献   
110.
Integrative gene transfer is widely used for bioproduction, drug screening, and therapeutic applications but usual viral methods lead to random and multicopy insertions, contribute to unstable transgene expression and can disturb endogenous gene expression. Homologous targeting of an expression cassette using rare‐cutting endonucleases is a potential solution; however the number of studied loci remains limited. Furthermore, the behavior and performance of various types of gene cassettes following gene targeting is poorly defined. Here we have evaluated three loci for gene targeting, including one locus compatible with the proposed Safe Harbor criteria for human translational applications. Using optimized conditions for homologous gene targeting, reporter genes under the control of different promoters were efficiently inserted at each locus in both sense and antisense orientations. Sustainable expression was achieved at all three loci without detectable disturbance of flanking gene expression. However, the promoter, the integration locus and the cassette orientation have a strong impact on transgene expression. Finally, single targeted integrations exhibited greatly improved transgene expression stability versus multicopy or random integration. Taken together, our data suggest a potential set of loci for site‐specific transgene integration, suitable for a variety of biotechnological applications. Biotechnol. Bioeng. 2013; 110: 2225–2235. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号