首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8732篇
  免费   707篇
  国内免费   6篇
  9445篇
  2023年   55篇
  2022年   121篇
  2021年   215篇
  2020年   121篇
  2019年   183篇
  2018年   196篇
  2017年   151篇
  2016年   305篇
  2015年   462篇
  2014年   527篇
  2013年   598篇
  2012年   751篇
  2011年   752篇
  2010年   411篇
  2009年   387篇
  2008年   540篇
  2007年   567篇
  2006年   461篇
  2005年   445篇
  2004年   390篇
  2003年   360篇
  2002年   332篇
  2001年   57篇
  2000年   44篇
  1999年   72篇
  1998年   78篇
  1997年   46篇
  1996年   46篇
  1995年   50篇
  1994年   37篇
  1993年   37篇
  1992年   48篇
  1991年   33篇
  1990年   35篇
  1989年   26篇
  1988年   26篇
  1987年   29篇
  1986年   22篇
  1985年   29篇
  1984年   39篇
  1983年   21篇
  1982年   41篇
  1981年   20篇
  1980年   14篇
  1979年   17篇
  1978年   17篇
  1977年   14篇
  1976年   13篇
  1975年   18篇
  1969年   11篇
排序方式: 共有9445条查询结果,搜索用时 15 毫秒
111.
Responses are quicker to predictable stimuli than if the time and place of appearance is uncertain. Studies that manipulate target predictability often involve overt cues to speed up response times. However, less is known about whether individuals will exhibit faster response times when target predictability is embedded within the inter-trial relationships. The current research examined the combined effects of spatial and temporal target predictability on reaction time (RT) and allocation of overt attention in a sustained attention task. Participants responded as quickly as possible to stimuli while their RT and eye movements were measured. Target temporal and spatial predictability were manipulated by altering the number of: 1) different time intervals between a response and the next target; and 2) possible spatial locations of the target. The effects of target predictability on target detection (Experiment 1) and target discrimination (Experiment 2) were tested. For both experiments, shorter RTs as target predictability increased across both space and time were found. In addition, the influences of spatial and temporal target predictability on RT and the overt allocation of attention were task dependent; suggesting that effective orienting of attention relies on both spatial and temporal predictability. These results indicate that stimulus predictability can be increased without overt cues and detected purely through inter-trial relationships over the course of repeated stimulus presentations.  相似文献   
112.
Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the administration of a combination of agents, with each agent targeted to the features of different subclones.Approximately half of the patients with pancreatic cancer are initially diagnosed with metastases to distal sites, with the commonest sites being the liver, lung, and peritoneum (1). Therapeutic strategies against metastases could help reduce the high mortality rates associated with this cancer (2). Understanding the nature of metastatic pancreatic cancer at a systems level can enable the discovery of potential targets for the development of targeted therapies.Pancreatic cancer has been shown to be a genetically evolving and heterogeneous disease (35). Clonal diversity and evolution of cancer genomes have also been demonstrated based on the isolation of distinct clonal populations purified directly from patient biopsies by means of flow cytometry followed by genomic characterization (6). A number of reports have documented the adoption of a proteomic approach for the discovery of potential biomarkers in pancreatic cancer (7, 8). However, these studies generally assume pancreatic cancers to be homogeneous, and the emphasis is placed on identifying molecules that are common across a broad array of tumors. There is a lack of studies systematically examining the proteomic changes or signaling pathways across pancreatic cancers to dissect the nature of the heterogeneity of each clone. An excellent setting in which the heterogeneity of tumors can be studied systematically is in a patient harboring metastases to several distant sites. To this end, we chose cells isolated from three metastatic pancreatic lesions of a single patient. The exomes of each tumor site were previously sequenced to study the progression of pancreatic cancer, and the results showed that all cell lines were identical for the genetic status of driver mutations (e.g. KRAS, TP53, and SMAD4) (9). Our hypothesis was that a better understanding of the proteomic consequences of the heterogeneity derived from genetic changes, and possibly other types of alterations, might provide additional opportunities to identify therapeutic targets.In order to precisely quantify differences across the proteomes of multiple metastatic pancreatic cancer lesions, we employed a SILAC-based1 quantitative proteomics strategy combined with high-resolution mass spectrometry (10, 11). Based on changes observed at the whole-proteome level, we found that a class of cell surface receptors showed significant enrichment with the highest alteration of their expression among the three metastatic pancreatic cancer cell lines examined (i.e. peritoneum, lung, and liver). Because the total protein levels provide information about the static levels of proteins and not their activity per se, we decided to examine the activation of phosphorylation-driven pathways, many of which are activated by cell surface receptors. To globally examine tyrosine phosphorylation-based signaling pathways, we carried out mass spectrometric analysis of purified tyrosine phosphorylated peptides enriched using anti-phosphotyrosine antibodies. As a result, we observed differential activation of tyrosine kinases in the three different sites of metastases. For example, Axl receptor tyrosine kinase was found to be hyperphosphorylated in lung and liver metastases relative to peritoneal metastasis. Expression of Axl receptor tyrosine kinase in primary and matched pancreatic cancers on tissue microarrays was validated by immunohistochemistry. Given such unique patterns of activation of pathways, it was possible that tumors derived from different sites could show differences in their sensitivity to pathway inhibitors. To test this, we performed experiments in which we screened cell lines derived from each metastatic site against a panel of small molecule inhibitors. We observed that the three metastatic pancreatic cancers had differential sensitivities to different inhibitors. For example, cells derived from the peritoneal metastasis were highly sensitive to lapatinib, whereas greater sensitivity to the Axl inhibitor R428 was observed in the lung metastasis cell line. Finally, we showed that treatment of mice bearing xenografts from these different pancreatic cancer cell lines with R428, an inhibitor of Axl receptor tyrosine kinase, led to reduction of tumors with evidence of activation of Axl.  相似文献   
113.
Summary Correspondence analysis (a form of multivariate statistics) applied to 74 5S ribosomal RNA sequences indicates that the sequences are interrelated in a systematic, nonrandom fashion. Aligned sequences are represented as vectors in a 5N-dimensional space, where N is the number of base positions in the 5S RNA molecule. Mutually orthogonal directions (called factor axes) along which intersequence variance is greatest are defined in this hyperspace. Projection of the sequences onto planes defined by these factorial directions reveals clustering of species that is suggestive of phylogenetic relationships. For each factorial direction, correspondence analysis points to regions of importance, i.e., those base positions at which the systematic changes occur that define that particular direction. In effect, the technique provides a rapid determination of group-specific signatures. In several instances, similarities between sequences are indicated that have only recently been inferred from visual base-to-base comparisons. These results suggest that correspondence analysis may provide a valuable starting point from which to uncover the patterns of change underlying the evolution of a macromolecule, such as 5S RNA.  相似文献   
114.
Streptococcus pneumoniae is the most frequent cause of bacterial meningitis, leading to permanent neurological damage in 30% and lethal outcome in 25% of patients. The cholesterol-dependent cytolysin pneumolysin is a major virulence factor of S. pneumoniae . It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. Here, we show that sublytic amounts of pneumolysin produce rapid bundling and increased acetylation of microtubules (signs of excessive microtubule stabilization) in various types of cells – neuroblastoma cells, fibroblasts and primary astrocytes. The bundling started perinuclearly and extended peripherally towards the membrane. The effect was not connected to pneumolysin's capacity to mediate calcium influx, macropore formation, apoptosis, or RhoA and Rac1 activation. Cellular cholesterol depletion and neutralization of the toxin by pre-incubation with cholesterol completely inhibited the microtubule phenotype. Pharmacological inhibition of Src-family kinases diminished microtubule bundling, suggesting their involvement in the process. The relevance of microtubule stabilization to meningitis was confirmed in an experimental pneumococcal meningitis animal model, where increased acetylation was observed. Live imaging experiments demonstrated a decrease in organelle motility after toxin challenge in a manner comparable to the microtubule-stabilizing agent taxol, thus proposing a possible pathogenic mechanism that might contribute to the CNS damage in pneumococcal meningitis.  相似文献   
115.
116.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   
117.

Background

Recent studies have demonstrated the association between increased concentrations of high-sensitivity cardiac troponin T (hs-cTnT) and the incidence of myocardial infarction, heart failure, and mortality. However, most prognostic studies to date focus on the value of hs-cTnT in the elderly or general population. The value of hs-cTnT in symptomatic patients visiting the outpatient department remains unclear. The aim of this study was to investigate the prognostic value of hs-cTnT as a biomarker in patients with symptoms of chest discomfort suspected for coronary artery disease and to assess its additional value in combination with other risk stratification tools in predicting cardiac events.

Methods

We studied 1,088 patients (follow-up 2.2±0.8 years) with chest discomfort who underwent coronary calcium scoring and coronary CT-angiography. Traditional cardiovascular risk factors and concentrations of hs-cTnT, N-terminal pro-brain-type natriuretic peptide (NT-proBNP) and high-sensitivity C-reactive protein (hsCRP) were assessed. Study endpoint was the occurrence of late coronary revascularization (>90 days), acute coronary syndrome, and cardiac mortality.

Results

Hs-cTnT was a significant predictor for the composite endpoint (highest quartile [Q4]>6.7 ng/L, HR 3.55; 95%CI 1.88–6.70; P<0.001). Survival analysis showed that hs-cTnT had significant predictive value on top of current risk stratification tools (Chi-square change P<0.01). In patients with hs-cTnT in Q4 versus P<0.01). This was not the case for hsCRP and NT-proBNP.

Conclusions

Hs-cTnT is a useful prognostic biomarker in patients with chest discomfort suspected for coronary artery disease. In addition, hs-cTnT was an independent predictor for cardiac events when corrected for cardiovascular risk profiling, calcium score and CT-angiography results.  相似文献   
118.
The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγ(flox/flox)). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6C(hi) monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection.  相似文献   
119.
The interleukin (IL)-1β-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1β processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1β processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.  相似文献   
120.

Background

Interleukin 4 (IL-4) is an anti-inflammatory cytokine, which regulates balance between TH1 and TH2 immune response, immunoglobulin class switching and humoral immunity. Polymorphisms in this gene have been reported to affect the risk of infectious and autoimmune diseases.

Methods

We have analyzed three regulatory IL-4 polymorphisms; -590C>T, -34C>T and 70 bp intron-3 VNTR, in 4216 individuals; including: (1) 430 ethnically matched case-control groups (173 severe malaria, 101 mild malaria and 156 asymptomatic); (2) 3452 individuals from 76 linguistically and geographically distinct endogamous populations of India, and (3) 334 individuals with different ancestry from outside India (84 Brazilian, 104 Syrian, and 146 Vietnamese).

Results

The -590T, -34T and intron-3 VNTR R2 alleles were found to be associated with reduced malaria risk (P<0.001 for -590C>T and -34C>T, and P = 0.003 for VNTR). These three alleles were in strong LD (r2>0.75) and the TTR2 (-590T, -34T and intron-3 VNTR R2) haplotype appeared to be a susceptibility factor for malaria (P = 0.009, OR = 0.552, 95% CI = 0.356 –0.854). Allele and genotype frequencies differ significantly between caste, nomadic, tribe and ancestral tribal populations (ATP). The distribution of protective haplotype TTR2 was found to be significant (χ2 3 = 182.95, p-value <0.001), which is highest in ATP (40.5%); intermediate in tribes (33%); and lowest in caste (17.8%) and nomadic (21.6%).

Conclusions

Our study suggests that the IL-4 polymorphisms regulate host susceptibility to malaria and disease progression. TTR2 haplotype, which gives protection against malaria, is high among ATPs. Since they inhabited in isolation and mainly practice hunter-gatherer lifestyles and exposed to various parasites, IL-4 TTR2 haplotype might be under positive selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号