首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   58篇
  国内免费   9篇
  591篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   13篇
  2017年   7篇
  2016年   11篇
  2015年   22篇
  2014年   25篇
  2013年   23篇
  2012年   25篇
  2011年   26篇
  2010年   27篇
  2009年   20篇
  2008年   23篇
  2007年   27篇
  2006年   24篇
  2005年   19篇
  2004年   22篇
  2003年   29篇
  2002年   17篇
  2001年   18篇
  2000年   19篇
  1999年   14篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   11篇
  1991年   12篇
  1990年   9篇
  1989年   11篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   3篇
  1980年   5篇
  1974年   6篇
  1973年   4篇
  1968年   4篇
  1937年   2篇
  1934年   2篇
  1933年   2篇
  1930年   3篇
  1927年   4篇
  1926年   2篇
  1925年   4篇
  1923年   2篇
排序方式: 共有591条查询结果,搜索用时 0 毫秒
81.
The turnip moth, Agrotis segetum (Lepidoptera, Noctuidae), is an important pest insect in Europe, Asia, and Africa. We have genetically characterized and classified a nucleopolyhedrovirus isolated from A. segetum larvae in Poland (AgseNPV-P). The restriction pattern of AgseNPV-P was distinct from an isolate from England/France (AgseNPV-UK and AgseNPV-F). Sequence analysis of three conserved baculovirus genes, polyhedrin, lef-8 and pif-2, revealed that AgseNPV-P differs substantially from the already described NPVs isolated from A. segetum and possibly represents a new NPV species. Phylogenetic analysis placed AgseNPV-P among group II NPVs and showed the closest relationship to Agrotis ipsilon (Agip) NPV and Spodoptera exigua (Se) MNPV.  相似文献   
82.
Oxalate decarboxylase (EC 4.1.1.2) catalyzes the conversion of oxalate to formate and carbon dioxide and utilizes dioxygen as a cofactor. By contrast, the evolutionarily related oxalate oxidase (EC 1.2.3.4) converts oxalate and dioxygen to carbon dioxide and hydrogen peroxide. Divergent free radical catalytic mechanisms have been proposed for these enzymes that involve the requirement of an active site proton donor in the decarboxylase but not the oxidase reaction. The oxidase possesses only one domain and manganese binding site per subunit, while the decarboxylase has two domains and two manganese sites per subunit. A structure of the decarboxylase together with a limited mutagenesis study has recently been interpreted as evidence that the C-terminal domain manganese binding site (site 2) is the catalytic site and that Glu-333 is the crucial proton donor (Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P., and Ealick, S. E. (2002) Biochemistry 41, 7659-7669). The N-terminal binding site (site 1) of this structure is solvent-exposed (open) and lacks a suitable proton donor for the decarboxylase reaction. We report a new structure of the decarboxylase that shows a loop containing a 3(10) helix near site 1 in an alternative conformation. This loop adopts a "closed" conformation forming a lid covering the entrance to site 1. This conformational change brings Glu-162 close to the manganese ion, making it a new candidate for the crucial proton donor. Site-directed mutagenesis of equivalent residues in each domain provides evidence that Glu-162 performs this vital role and that the N-terminal domain is either the sole or the dominant catalytically active domain.  相似文献   
83.
Two distinct envelope fusion proteins (EFPs) (GP64 and F) have been identified in members of the Baculoviridae family of viruses. F proteins are found in group II nucleopolyhedroviruses (NPVs) of alphabaculoviruses and in beta- and deltabaculoviruses, while GP64 occurs only in group I NPVs of alphabaculoviruses. It was proposed that an ancestral baculovirus acquired the gp64 gene that conferred a selective advantage and allowed it to evolve into group I NPVs. The F protein is a functional analogue of GP64, as evidenced from the rescue of gp64-null Autographa californica multicapsid nucleopolyhedrovirus (MNPV) (AcMNPV) by F proteins from group II NPVs or from betabaculoviruses. However, GP64 failed to rescue an F-null Spodoptera exigua MNPV (SeMNPV) (group II NPV). Here, we report the successful generation of an infectious gp64-rescued group II NPV of Helicoverpa armigera (vHaBacΔF-gp64). Viral growth curve assays and quantitative real-time PCR (Q-PCR), however, showed substantially decreased infectivity of vHaBacΔF-gp64 compared to the HaF rescue control virus vHaBacΔF-HaF. Electron microscopy further showed that most vHaBacΔF-gp64 budded viruses (BV) in the cell culture supernatant lacked envelope components and contained morphologically aberrant nucleocapsids, suggesting the improper BV envelopment or budding of vHaBacΔF-gp64. Bioassays using pseudotyped viruses with a reintroduced polyhedrin gene showed that GP64-pseudotyped Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV) significantly delayed the mortality of infected H. armigera larvae.The envelope fusion protein (EFP) of budded viruses (BV) (30) of baculoviruses is critical for virus entry (attachment and fusion) and egress (assembly and budding) (7, 13, 21). Two types of BV EFPs have been identified in the Baculoviridae family of viruses. The F proteins are similar in structure, but they are very diverse in their amino acid sequences (20 to 40% identity). They are widespread within the baculovirus family (group II NPVs of the alphabaculoviruses and in beta- and deltabaculoviruses) (23) and are thought to be carried by ancestral members (26). In contrast, the baculovirus GP64 homologs are all closely related EFPs (>74% sequence identity) and found only in group I NPVs of the alphabaculoviruses (23). It has been suggested that a gp64 gene was acquired relatively recently by an ancestral virus of the group II NPV, thereby giving these viruses a selective advantage and obviating the need of the envelope fusion function of the F protein (23). A nonfusogenic F homolog (F-like protein), however, is maintained in the genome of group I NPVs, functioning as a virulence factor (9, 17, 24, 32).GP64 and F proteins play similar roles during the baculovirus infection processes, such as virus-cell receptor attachment, membrane fusion, and efficient budding. However, there are striking differences between the receptor usage of GP64 and F proteins as well. These two types of proteins are very different in structure, mode of action, and receptor exploitation. The crystal structure reveals that GP64 belongs to class III viral fusion proteins, with its fusion loop located in the internal region of the protein, and proteolytic cleavage is not required for activation of fusion activity (10). F proteins by contrast share common features of class I viral fusion proteins (12). The proteolytic cleavage of the F precursor (F0) by a furin-like protease generates an N-terminal F2 fragment and a C-teminal F1 fragment. This cleavage is essential for exposing the N-terminal fusion peptide of F1 and for activating F fusogenicity (8, 36). Although the nature of the baculovirus host cell receptors is still enigmatic, it has been reported that Autographa californica multicapsid nucleopolyhedrovirus (MNPV) (AcMNPV)) and Orgyia pseudotsugata MNPV (OpMNPV), both using GP64 as their EFPs, exploit the same insect cell receptor, while Lymantria dispar MNPV (LdMNPV) with an F protein as the EFP utilizes a cell receptor different from that used by AcMNPV (7, 37). Additionally, in the case of SeMNPV, using competition assays, it was confirmed that the baculovirus F protein and GP64 recognized distinct receptors to gain entry into cultured insect cells (34).Pseudotyping viral nucleocapsid with heterologous EFPs to form pseudotype virions is a valuable approach to studying the structure, function, and specificity of heterologous EFPs. It has been a successful strategy to expand or alter viral host range, i.e., in gene delivery (3). For example, vesicular stomatitis virus G (VSV-G)-pseudotyped lentivirus and AcMNPV gp64-pseudotyped HIV-1 exhibit high virus titers and wider tropism (5, 14, 38); the gp64-pseudotyped human respiratory syncytial virus (HRSV) lacking its own glycoproteins is of high and stable infectivity (22); furthermore, pseudotyped lentiviruses with modified fusion proteins of GP64 with targeting peptides (i.e., hepatitis B virus PreS1 peptide, involved in viral attachment) or with the decay accelerating factor (DAF) facilitate the targeting to specific cell types or confer stability against serum inactivation, respectively (6, 19). For the Baculoviridae, a series of pseudotyping studies have investigated the functional analogy between GP64 and F proteins. F proteins of group II NPVs (SeMNPV, LdMNPV, and Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus [HearNPV]) can substitute for GP64 in gp64-null AcMNPV viruses (15, 16). Recent studies indicated that many granulovirus (GV) F proteins, but not F protein from Plutella xylostella GV (PxGV), can rescue a gp64-null AcMNPV (16, 39). These results demonstrated that baculovirus F proteins are functional analogues to GP64. Since it was postulated that GP64 was captured by a baculovirus during evolution (24), one would expect the functional incorporation of GP64 into the BV of an F-null group II NPV. However, the reverse substitution of a group II NPV (SeMNPV) F protein by GP64 failed to produce infectious progeny viruses (35).In this paper, we show that AcMNPV gp64 could be inserted into an F-null HearNPV genome and produce infectious progeny virus upon transfection of insect cells. The infectivity of the pseudotyped virus, however, was greatly impaired, and large amounts of morphologically defective BV were produced. Bioassay experiments indicated that the infectivity of GP64-pseudotyped F-null HearNPV for insect larvae was not reduced, but that the time to death was significantly delayed. These results demonstrate that GP64 alone can only partially complement HearNPV F protein function.  相似文献   
84.
Naturally occurring insect viruses can modify the behaviour of infected insects and thereby modulate virus transmission. Modifications of the virus genome could alter these behavioural effects. We studied the distance moved and the position of virus‐killed cadavers of fourth instars of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) infected with a wild‐type genotype of H. armigera nucleopolyhedrovirus (HaSNPV) or with one of two recombinant genotypes of this virus on cotton plants. The behavioural effects of virus infection were examined both in larvae infected with a single virus genotype, and in larvae challenged with mixtures of the wild‐type and one of the recombinant viruses. An egt‐negative virus variant caused more rapid death and lower virus yield in fourth instars, but egt‐deletion did not produce consistent behavioural effects over three experiments, two under controlled glasshouse conditions and one in field cages. A recombinant virus containing the AaIT‐(Androctonus australis Hector) insect‐selective toxin gene, which expresses a neurotoxin derived from a scorpion, caused faster death and cadavers were found lower down the plant than insects infected with unmodified virus. Larvae that died from mixed infections of the AaIT‐expressing recombinant and the wild‐type virus died at positions significantly lower, compared to infection with the pure wild‐type viral strain. The results indicate that transmission of egt‐negative variants of HaSNPV are likely to be affected by lower virus yield, but not by behavioural effects of egt gene deletion. By contrast, the AaIT recombinant will produce lower virus yields as well as modified behaviour, which together can contribute to reduced virus transmission under field conditions. In addition, larvae infected with both the wild‐type virus and the toxin recombinant behaved as larvae infected with the toxin recombinant only, which might be a positive factor for the risk assessment of such toxin recombinants in the environment.  相似文献   
85.
The present review summarizes recent observations on binding of Arf and COPI coat to isolated rat liver peroxisomes. The general structural and functional features of both Arf and coatomer were considered along with the requirements and dependencies of peroxisomal Arf and coatomer recruitment. Studies on the expression of mammalian Pex11 proteins, mainly Pex11alpha and Pex11beta, intimately related to the process of peroxisome proliferation, revealed a sequence of individual steps including organelle elongation/tubulation, formation of membrane and matrix protein patches segregating distinct proteins from each other, development of membrane constrictions and final membrane fission. Based on the similarities of the processes leading to cargo selection and concentration on Golgi membranes on the one hand and to the formation of peroxisomal protein patches on the other hand, an implication of Arf and COPI in distinct processes of peroxisomal proliferation is hypothesized. Alternatively, peroxisomal Arf/COPI might facilitate the formation of COPI-coated peroxisomal vesicles functioning in cargo transport and retrieval from peroxisomes to the ER. Recent observations suggesting transport of Pex3 and Pex19 during early steps of peroxisome biogenesis from the ER to peroxisomes inevitably propose such a retrieval mechanism, provided the ER to peroxisome pathway is based on transporting vesicles.  相似文献   
86.
87.
Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed.  相似文献   
88.
West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses.  相似文献   
89.
The vertebrate 2-5A system is part of the innate immune response and central to cellular antiviral activities. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′-5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′-5′ oligoadenylate synthetases. The 2-5As bind and activate RNase L, an unspecific endoribonuclease, resulting in viral and cellular RNA decay. Given that most endogenous RNAs are degraded by RNase L, continued enzyme activity will eventually lead to cell growth arrest and cell death. This is averted, when 2-5As and their 5′-dephosphorylated forms, the so-called 2-5A core molecules, are cleaved and thus inactivated by 2′-5′-specific nuclease(s), e.g. phosphodiesterase 12, thereby turning RNase L into its latent form. In this study, we have characterized the human phosphodiesterase 12 in vitro focusing on its ability to degrade 2-5As and 2-5A core molecules. We have found that the enzyme activity is distributive and is influenced by temperature, pH and divalent cations. This allowed us to determine Vmax and Km kinetic parameters for the enzyme. We have also identified a novel 2′-5′-oligoadenylate nuclease; the human plasma membrane-bound ectonucleotide pyrophosphatase/phosphodiesterase 1, suggesting that 2-5A catabolism may be a multienzyme-regulated process.  相似文献   
90.
Sequence comparisons of the genomes of white spot syndrome virus (WSSV) strains have identified regions containing variable-length insertions/deletions (i.e. indels). Indel-I and Indel-II, positioned between open reading frames (ORFs) 14/15 and 23/24, respectively, are the largest and the most variable. Here we examined the nature of these 2 indel regions in 313 WSSV-infected Penaeus monodon shrimp collected between 2006 and 2009 from 76 aquaculture ponds in the Mekong Delta region of Vietnam. In the Indel-I region, 2 WSSV genotypes with deletions of either 5950 or 6031 bp in length compared with that of a reference strain from Thailand (WSSV-TH-96-II) were detected. In the Indel-II region, 4 WSSV genotypes with deletions of 8539, 10970, 11049 or 11866 bp in length compared with that of a reference strain from Taiwan (WSSV-TW) were detected, and the 8539 and 10970 bp genotypes predominated. Indel-II variants with longer deletions were found to correlate statistically with WSSV-diseased shrimp originating from more intensive farming systems. Like Indel-I lengths, Indel-II lengths also varied based on the Mekong Delta province from which farmed shrimp were collected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号