首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   55篇
  2023年   2篇
  2021年   10篇
  2020年   3篇
  2019年   7篇
  2018年   4篇
  2017年   14篇
  2016年   6篇
  2015年   10篇
  2014年   19篇
  2013年   23篇
  2012年   29篇
  2011年   21篇
  2010年   17篇
  2009年   10篇
  2008年   20篇
  2007年   19篇
  2006年   24篇
  2005年   18篇
  2004年   18篇
  2003年   21篇
  2002年   16篇
  2001年   18篇
  2000年   10篇
  1999年   16篇
  1998年   9篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   11篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   2篇
  1986年   9篇
  1985年   2篇
  1984年   4篇
  1982年   5篇
  1981年   12篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1969年   1篇
排序方式: 共有491条查询结果,搜索用时 15 毫秒
41.
Topoisomerase II is able to break and rejoin double-strand DNA. It controls the topological state and forms and resolves knots and catenanes. Not much is known about the relation between the chromosome segregation and condensation defects as found in yeast top2 mutants and the role of topoisomerase II in meiosis. We studied meiosis in a heat-sensitive top2 mutant of Schizosaccharomyces pombe. Topoisomerase II is not required until shortly before meiosis I. The enzyme is necessary for condensation shortly before the first meiotic division but not for early meiotic prophase condensation. DNA replication, prophase morphology, and dynamics of the linear elements are normal in the top2 mutant. The top2 cells are not able to perform meiosis I. Arrested cells have four spindle pole bodies and two spindles but only one nucleus, suggesting that the arrest is nonregulatory. Finally, we show that the arrest is partly solved in a top2 rec7 double mutant, indicating that topoisomerase II functions in the segregation of recombined chromosomes. We suggest that the inability to decatenate the replicated DNA is the primary defect in top2. This leads to a loss of chromatin condensation shortly before meiosis I, failure of sister chromatid separation, and a nonregulatory arrest.  相似文献   
42.
Ageratum conyzoides L. (billy goat weed; Asteraceae) is an annual invasive weed native of tropical America and has now naturalized worldwide, particularly in Southeast Asia. The present study investigated the nature and potential of root-mediated allelopathic interference of A. conyzoides against rice (Oryza sativa). Root and shoot length and biomass accumulation of rice were significantly reduced (by 18–30%) when grown in the rhizosphere soil of the weed indicating the release of putative allelochemicals from the weed into the soil. The growth of rice was also progressively reduced in the soil amended with increasing amounts of root residues (5, 10 and 20 g kg−1 soil) of A. conyzoides. The addition of activated charcoal, an inert material with high affinity for organic biomolecules, partly ameliorated the negative effects of root residues amended in the soil. Further, there was no negative effect on the availability of soil nutrients in the root-amended soils. These were rather nutrient rich with greater electrical conductivity, and higher amount of organic matter, thus indicating no role in observed growth reduction. The reduction in allelopathic effects of root residue upon charcoal addition further indicated that putative phytotoxins released from the weed roots are water-soluble phenolic compounds. A significant amount of water-soluble phenolics were present in rhizosphere (∼6-times higher) and root-amended soils (∼5–10-fold higher) and their content was reduced (to ∼3.6–7.0-fold higher) when charcoal was added. The observed growth reduction in Ageratum rhizospheric or root-amended soils was concomitant with the amount of phenolic compounds. Upon HPLC analyses, these were identified as p-coumaric acid, gallic acid, ferulic acid, p-hydroxybenzoic acid and anisic acid. Under laboratory conditions, these phenolic acids reduced the root length and seedling weight of rice individually as well as in equimolar mixture, though no synergistic effect was noticed. The study concludes that root exudates and residues of A. conyzoides suppress the growth of rice by releasing phenolic allelochemicals into the soil rhizosphere and not through alteration of soil nutrients, and allelopathy plays a significant role in root-mediated negative interference of A. conyzoides.  相似文献   
43.
Antibody-targeted nanoparticles have the potential to significantly increase the therapeutic index of cytotoxic anti-cancer therapies by directing them to tumor cells. Using antibodies or their fragments requires careful engineering because multiple parameters, including affinity, internalization rate and stability, all need to be optimized. Here, we present a case study of the iterative engineering of a single chain variable fragment (scFv) for use as a targeting arm of a liposomal cytotoxic nanoparticle. We describe the effect of the orientation of variable domains, the length and composition of the interdomain protein linker that connects VH and VL, and stabilizing mutations in both the framework and complementarity-determining regions (CDRs) on the molecular properties of the scFv. We show that variable domain orientation can alter cross-reactivity to murine antigen while maintaining affinity to the human antigen. We demonstrate that tyrosine residues in the CDRs make diverse contributions to the binding affinity and biophysical properties, and that replacement of non-essential tyrosines can improve the stability and bioactivity of the scFv. Our studies demonstrate that a comprehensive engineering strategy may be required to identify a scFv with optimal characteristics for nanoparticle targeting.  相似文献   
44.
Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.  相似文献   
45.
The present study was conducted to investigate the effect of the residue of Chenopodium murale L. on growth, nodulation and macromolecule content of two legume crops, viz., Cicer arietinum L. (chickpea) and Pisum sativum L. (pea). A significant reduction in root and shoot length as well as dry matter accumulation occurred when both the legumes were grown in the soil amended with 5, 10, 20 and 40 g residue kg−1 soil. In general, a gradual decline in growth was associated with an increasing amount of residues in the soil. There was also a significant reduction in total chlorophyll content and the amounts of protein and carbohydrates (macromolecules) in plants growing in the residue-amended soil. The nodulation was completely absent in chickpea and pea when the plants were grown in the soil amended with 10 and 20 g residue kg−1 soil, respectively. At a lower rate of residue amendment (5 g kg−1 soil), a significant decline in nodule number and weight, and leghaemoglobin content was recorded. Root oxidizability, an indirect measure of tissue viability and cellular respiration, was adversely affected in both the legumes under various treatments of residue amendment. The observed growth reduction concomitant with increased proline accumulation indicated the presence of some inhibitory compounds in the residue-amended soil. It was rich in phenolics identified as protocatechuic, ferulic, p-coumaric and syringic acid with 12.8, 30.4, 20.2 and 33.6% relative content, respectively. The results suggest that the residue of C. murale releases phenolic allelochemicals, which deleteriously affect the growth, nodulation and macromolecule content of chickpea and pea.  相似文献   
46.
Protectins are newly identified natural chemical mediators that counter leukocyte activation to promote resolution of inflammation. In this study, we provide the first evidence for protectin D1 (PD1, 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid) formation from docosahexaenoic acid in human asthma in vivo and PD1 counterregulatory actions in allergic airway inflammation. PD1 and 17S-hydroxy-docosahexaenoic acid were present in exhaled breath condensates from healthy subjects. Of interest, levels of PD1 were significantly lower in exhaled breath condensates from subjects with asthma exacerbations. PD1 was also present in extracts of murine lungs from both control animals and those sensitized and aerosol challenged with allergen. When PD1 was administered before aeroallergen challenge, airway eosinophil and T lymphocyte recruitment were decreased, as were airway mucus, levels of specific proinflammatory mediators, including IL-13, cysteinyl leukotrienes, and PGD(2), and airway hyperresponsiveness to inhaled methacholine. Of interest, PD1 treatment after aeroallergen challenge markedly accelerated the resolution of airway inflammation. Together, these findings provide evidence for endogenous PD1 as a pivotal counterregulatory signal in allergic airway inflammation and point to new therapeutic strategies for modulating inflammation in asthmatic lung.  相似文献   
47.
Abnormal dietary intake of macronutrients is implicated in the development of obesity and fatty liver disease. Steatosis develops in cultured hepatocytes exposed to medium containing either a high concentration of long chain free fatty acids (HFFA) or medium deficient in methionine and choline (MCD). This study examined the mitochondrial reactive oxygen species (ROS)-dependent regulation of the phosphoinositol (PI) 3-kinase pathway in steatosis induced by exposure of AML-12 mouse hepatocytes to MCD or HFFA medium. Exposure to either MCD or HFFA medium resulted in increased production of superoxide anions and H(2)O(2), transduction of the PI 3-kinase pathway and steatosis. Inhibition of PI 3-kinase with LY294002 prevented steatosis. Pharmacologically inhibiting electron transport chain complex III production of ROS prevented activation of PI 3-kinase during macronutrient perturbation, whereas pharmacologically promoting electron transport chain complex III ROS production activated PI 3-kinase independent of nutrient input. The data suggest that H(2)O(2) is the ROS species involved in signal transduction; promoting the rapid conversion of superoxide to H(2)O(2) does not inhibit PI 3-kinase pathway activation during nutrient perturbation, and exogenous H(2)O(2) activates it independent of nutrient input. In addition to transducing PI 3-kinase, the ROS-dependent signal cascade amplifies the PI 3-kinase signal by maintaining phosphatase and tensin homolog in its inactive phosphorylated state. Knockdown of phosphatase and tensin homolog by small interfering RNA independently activated the PI 3-kinase pathway. Our findings suggest a common path for response to altered nutrition involving mitochondrial ROS-dependent PI 3-kinase pathway regulation, leading to steatosis.  相似文献   
48.
Alopecia areata (AA) is a genetically determined, immune-mediated disorder of the hair follicle that affects 1%-2% of the U.S. population. It is defined by a spectrum of severity that ranges from patchy localized hair loss on the scalp to the complete absence of hair everywhere on the body. In an effort to define the genetic basis of AA, we performed a genomewide search for linkage in 20 families with AA consisting of 102 affected and 118 unaffected individuals from the United States and Israel. Our analysis revealed evidence of at least four susceptibility loci on chromosomes 6, 10, 16 and 18, by use of several different statistical approaches. Fine-mapping analysis with additional families yielded a maximum multipoint LOD score of 3.93 on chromosome 18, a two-point affected sib pair (ASP) LOD score of 3.11 on chromosome 16, several ASP LOD scores >2.00 on chromosome 6q, and a haplotype-based relative risk LOD of 2.00 on chromosome 6p (in the major histocompatibility complex locus). Our findings confirm previous studies of association of the human leukocyte antigen locus with human AA, as well as the C3H-HeJ mouse model for AA. Interestingly, the major loci on chromosomes 16 and 18 coincide with loci for psoriasis reported elsewhere. These results suggest that these regions may harbor gene(s) involved in a number of different skin and hair disorders.  相似文献   
49.
BACKGROUND AND AIMS: Age-related macular degeneration (AMD) is the leading cause of blindness in the Western World. It is now evident that both genetic and environmental factors contribute to disease susceptibility. We tested the hypotheses that (a) a common coding SNP in the LOC387715 gene is associated with advanced AMD (geographic atrophy or choroidal neovascularization), and (b) that modifiable environmental exposures alter AMD susceptibility associated with this SNP. METHODS: A case-control association analysis was performed on participants (530 advanced AMD cases and 280 controls) ascertained as part of the multi-center Age-Related Eye Disease Study. AMD status was determined by the reading center from fundus photographs using the AREDS AMD grading categorization. Environmental risk factor exposure data was collected from participants whose DNA was also genotyped for the LOC387715 gene SNP rs10490924. Multivariate logistic regression analyses were performed. RESULTS AND CONCLUSIONS: The number of risk alleles at the LOC387715 SNP was associated with advanced AMD, with odds ratios (OR) = 3.0 (95% confidence interval (CI) 2.1-4.3) for the GT heterozygous genotype and OR = 12.1 (5.6-26.5) for the homozygous TT risk genotype, after controlling for demographic and behavioral risk factors. The LOC387715 SNP was associated with both forms of advanced AMD. Current cigarette smoking and body mass index were independently related to AMD, controlling for genotype. However, there was no statistical interaction between LOC387715 genotype and smoking with regard to advanced AMD development.  相似文献   
50.
Biofilm formation (BF) in the setting of candiduria has not been well studied. We determined BF and MIC to antifungals in Candida spp. isolates grown from urine samples of patients and performed a retrospective chart review to examine the correlation with risk factors. A total of 67 Candida spp. isolates were grown from urine samples from 55 patients. The species distribution was C. albicans (54%), C. glabrata (36%), and C. tropicalis (10%). BF varied greatly among individual Candida isolates but was stable in sequential isolates during chronic infection. BF also depended on the growth medium and especially in C. albicans was significantly enhanced in artificial urine (AU) compared to RPMI medium. In nine of the C. albicans strains BF was 4- to 10-fold higher in AU, whereas in three of the C. albicans strains and two of the C. glabrata strains higher BF was measured in RPMI medium than in AU. Determination of the MICs showed that planktonic cells of all strains were susceptible to amphotericin B (AMB) and caspofungin (CASPO) and that three of the C. glabrata strains and two of the C. albicans strains were resistant to fluconazole (FLU). In contrast, all biofilm-associated adherent cells were resistant to CASPO and FLU. The biofilms of 14 strains (28%) were sensitive to AMB (MIC50 of <1 μg/ml). Correlation between degree of BF and MIC of AMB was not seen in RPMI grown biofilms but was present when grown in AU. A retrospective chart review demonstrated no correlation of known risk factors of candiduria with BF in AU or RPMI. We conclude that BF is a stable characteristic of Candida strains that varies greatly among clinical strains and is dependent on the growth medium. Resistance to AMB is associated with higher BF in AU, which may represent the more physiologic medium to test BF. Future studies should address whether in vitro BF can predict treatment failure in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号