首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   11篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   5篇
  2013年   14篇
  2012年   15篇
  2011年   17篇
  2010年   5篇
  2009年   10篇
  2008年   15篇
  2007年   18篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   11篇
  2002年   14篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1988年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有186条查询结果,搜索用时 31 毫秒
101.
Deoxyribonucleoside kinases are feedback inhibited by the final products of the salvage pathway, the deoxyribonucleoside triphosphates. In the present study, the mechanism of feedback inhibition is presented based on the crystal structure of a complex between the fruit fly deoxyribonucleoside kinase and its feedback inhibitor deoxythymidine triphosphate. The inhibitor was found to be bound as a bisubstrate inhibitor with its nucleoside part in the nucleoside binding site and with its phosphate groups partially occupying the phosphate donor site. The overall structure of the enzyme--inhibitor complex is very similar to the enzyme--substrate complexes with deoxythymidine and deoxycytidine, except for a conformational change within a region otherwise directly involved in catalysis. This conformational change involves a magnesium ion, which is coordinated in the inhibitor complex to the phosphates and to the primary base, Glu52, that normally is positioned close to the 5'-OH of the substrate deoxyribose.  相似文献   
102.
A well known physiological property of erythrocytes is that they can aggregate and form a rouleau. We present a theoretical analysis of erythrocyte shapes in a long rouleau composed of cells with identical sizes. The study is based on the area difference elasticity model of lipid membranes, and takes into consideration the adhesion of curved axisymmetric membranes. The analysis predicts that the erythrocytes in the rouleau can have either a discoid or a cup-like shape. These shapes are analogous to the discoid and stomatocyte shapes of free erythrocytes. The transitions between the discoid and cup-like shapes in the rouleau are characterized. The occurrence of these transitions depends on three model parameters: the cell relative volume, the preferred difference between the areas of the membrane bilayer leaflets, and the strength of the adhesion between the membranes. The cup-like shapes are favored at small relative volumes and small preferred area differences, and the discoid shapes are favored at large values of these parameters. Increased adhesion strength enlarges the contact area between the cells, flattens the cells, and consequently promotes the discoid shapes.  相似文献   
103.
In mammals four deoxyribonucleoside kinases, with a relatively restricted specificity, catalyze the phosphorylation of the four natural deoxyribonucleosides. When cultured mosquito cells, originating from the malaria vector Anopheles gambiae, were examined for deoxyribonucleoside kinase activities, only a single enzyme was isolated. Subsequently, the corresponding gene was cloned and over-expressed. While the mosquito kinase (Ag-dNK) phosphorylated all four natural deoxyribonucleosides, it displayed an unexpectedly higher relative efficiency for the phosphorylation of purine versus pyrimidine deoxyribonucleosides than the fruit fly multisubstrate deoxyribonucleoside kinase (EC 2.7.1.145). In addition, Ag-dNK could also phosphorylate some medically interesting nucleoside analogs, like stavudine (D4T), 2-chloro-deoxyadenosine (CdA) and 5-bromo-vinyl-deoxyuridine (BVDU). Although the biological significance of multisubstrate deoxyribonucleoside kinases and their diversity among insects remains unclear, the observed variation provides a whole range of applications, as species specific and highly selective targets for insecticides, they have a potential to be used in the enzymatic production of various (di-)(deoxy-)ribonucleoside monophosphates, and as suicide genes in gene therapy.  相似文献   
104.
The yeast Saccharomyces cerevisiae is characterized by its ability to: (a) degrade glucose or fructose to ethanol, even in the presence of oxygen (Crabtree effect); (b) grow in the absence of oxygen; and (c) generate respiratory-deficient mitochondrial mutants, so-called petites. How unique are these properties among yeasts in the Saccharomyces clade, and what is their origin? Recent progress in genome sequencing has elucidated the phylogenetic relationships among yeasts in the Saccharomyces complex, providing a framework for the understanding of the evolutionary history of several modern traits. In this study, we analyzed over 40 yeasts that reflect over 150 million years of evolutionary history for their ability to ferment, grow in the absence of oxygen, and generate petites. A great majority of isolates exhibited good fermentation ability, suggesting that this trait could already be an intrinsic property of the progenitor yeast. We found that lineages that underwent the whole-genome duplication, in general, exhibit a fermentative lifestyle, the Crabtree effect, and the ability to grow without oxygen, and can generate stable petite mutants. Some of the pre-genome duplication lineages also exhibit some of these traits, but a majority of the tested species are petite-negative, and show a reduced Crabtree effect and a reduced ability to grow in the absence of oxygen. It could be that the ability to accumulate ethanol in the presence of oxygen, a gradual independence from oxygen and/or the ability to generate petites were developed later in several lineages. However, these traits have been combined and developed to perfection only in the lineage that underwent the whole-genome duplication and led to the modern Saccharomyces cerevisiae yeast.  相似文献   
105.
Petite-positivity - the ability to tolerate the loss of mtDNA - was examined after the treatment with ethidium bromide (EB) in over hundred isolates from the Saccharomyces/Kluyveromyces complex. The identity of petite mutants was confirmed by the loss of specific mtDNA DAPI staining patterns. Besides unequivocal petite-positive and petite-negative phenotypes, a few species exhibited temperature sensitive petite positive phenotype and petiteness of a few other species could be observed only at the elevated EB concentrations. Several yeast species displayed a mixed 'moot' phenotype, where a major part of the population did not tolerate the loss of mtDNA but several cells did. The genera from postwhole-genome duplication lineages (Saccharomyces, Kazachstania, Naumovia, Nakaseomyces) were invariably petite-positive. However, petite-positive traits could also be observed among the prewhole-genome duplication species.  相似文献   
106.
Comparative genomics reveals novel biochemical pathways   总被引:2,自引:0,他引:2  
How well do we understand which enzymes are involved in the primary metabolism of the cell? A recent study using comparative genomics and postgenomics approaches revealed a novel pathway in the most studied organism, Escherichia coli. The analysis of a new operon consisting of seven previously uncharacterized genes thought to be involved in the degradation of nucleic acid precursors shows the impact of comparative genomics on the discovery of novel pathways and enzymes.  相似文献   
107.
Erectile dysfunction is a common problem whose relation to cardiovascular diseases has scientifically been proved, but it has not been studied sufficiently in patients recovering from myocardial infarction. The objective of this study was to establish the frequency of erectile dysfunction in patients recovering from myocardial infarction. We examined 89 patients (aged 30 to 75 years) included in the program of cardiac rehabilitation after myocardial infarction. The results were compared with 91 healthy examinees of the same age. Even 82% of the patients who recovered from myocardial infarction have problems with erectile dysfunction, compared to 42.9% of healthy examinees. The prevalence of erectile dysfunction increases with the age in both groups. In the group of patients recovering from myocardial infarction aged 30 do 39 years, the erectile dysfunction decreased after 6 months, while in other age subgroups and between controls, there were no significant changes in erectile dysfunction prevalence during the analysed time period. We concluded that erectile dysfunction is a significant problem in patients recovering from myocardial infarction. It should be recognized on time in order to provide a better life quality for the patient with a multidisciplinary approach.  相似文献   
108.
For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown that the minimum number of genes from each species that need to be compared to produce a reliable phylogeny is about 20. Yeast has also become an attractive model to study speciation in eukaryotes, especially to understand molecular mechanisms behind the establishment of reproductive isolation. Comparison of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide the background to use more yeast species in model studies, to combat pathogens and for efficient manipulation of industrial strains.  相似文献   
109.
Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h(-1) the metabolism was respiro-fermentative. The dilution rate at which the switch in metabolism occurred, i.e. the critical dilution rate, was 66% higher than the typical critical dilution rate of S. cerevisiae. The maximum specific oxygen consumption rate around the critical dilution rate was found to 13.6 mmol (g dry weight)(-1) h(-1) and the capacity of the pyruvate dehydrogenase-bypass pathway was estimated to be high from in vitro enzyme activities; especially the specific activity of acetyl-CoA synthetase was much higher than in S. cerevisiae at all tested conditions. Addition of glucose to respiring cells of S. kluyveri led to ethanol formation after a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition.  相似文献   
110.
Nucleoside phosphorylases are essential for the salvage and catabolism of nucleotides in bacteria and other organisms, and members of this enzyme superfamily have been of interest for the development of antimicrobial and cancer therapies. The nucleotide phosphorylase superfamily 1 encompasses a number of different enzymes which share a general superfold and catalytic mechanism, while they differ in the nature of the nucleophiles used and in the nature of characteristic active site residues. Recently, one subfamily, the uridine phosphorylases, has been subdivided into two types which differ with respect to the mechanism of transition state stabilization, as dictated by differences in critical amino acid residues. Little is known about the phylogenetic distribution and relationship of the two different types, as well as the relationship to other NP-1 superfamily members. Here comparative genomic analysis illustrates that UP-1s and UP-2s fall into monophyletic groups and are biased with respect to species representation. UP-1 evolved in Gram negative bacteria, while Gram positive species tend to predominantly contain UP-2. PNP (a sister clade to all UPs) contains both Gram positive and Gram negative species. The findings imply that the nucleoside phosphorylase superfamily 1 evolved through a series of three important duplications, leading to the separate, monophyletic enzyme families, coupled to individual lateral transfer events. Extensive horizontal transfer explains the occurrence of unexpected uridine phosphorylases in some genomes. This study provides a basis for understanding the evolution of uridine and purine nucleoside phosphorylases with respect to DNA/RNA metabolism and with potential utility in the design of antimicrobial and anti-tumor drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号