首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   427篇
  免费   20篇
  2022年   2篇
  2021年   10篇
  2020年   7篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   5篇
  2015年   12篇
  2014年   25篇
  2013年   22篇
  2012年   29篇
  2011年   25篇
  2010年   32篇
  2009年   21篇
  2008年   22篇
  2007年   38篇
  2006年   23篇
  2005年   20篇
  2004年   17篇
  2003年   16篇
  2002年   22篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1968年   1篇
  1965年   1篇
  1957年   1篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
131.
We have used a systematic protocol for extracting, quantitating, sexing and validating ancient human mitochondrial and nuclear DNA of one male and one female Beothuk, a Native American population from Newfoundland, which became extinct approximately 180 years ago. They carried mtDNA haplotypes, which fall within haplogroups X and C, consistent with Northeastern Native populations today. In addition we have sexed the male using a novel-sexing assay and confirmed the authenticity of his Y chromosome with the presence of the Native American specific Y-QM3 single nucleotide polymorphism (SNP). This is the first ancient nuclear SNP typed from a Native population in the Americas. In addition, using the same teeth we conducted a stable isotopes analysis of collagen and dentine to show that both individuals relied on marine sources (fresh and salt water fish, seals) with no hierarchy seen between them, and that their water sources were pooled or stored water. Both mtDNA sequence data and Y SNP data hint at possible gene flow or a common ancestral population for both the Beothuk and the current day Mikmaq, but more importantly the data do not lend credence to the proposed idea that the Beothuk (specifically, Nonosabasut) were of admixed (European-Native American) descent. We also analyzed patterns of DNA damage in the clones of authentic mtDNA sequences; there is no tendency for DNA damage to occur preferentially at previously defined mutational hotspots, suggesting that such mutational hotspots are not hypervariable because they are more prone to damage.  相似文献   
132.
133.
The aim of our study was to investigate the effect of maternal obesity on the quality and developmental capabilities of in vivo-derived preimplantation embryos. A two-generation dietary model, based on mice overfeeding during intrauterine and early postnatal development, was used to produce four types of female animals: with physiological (7%–8%), slightly elevated (8%–11%), highly elevated (>11%), and low (<7%) amounts of body fat. Spontaneously ovulating females (5–6 weeks old) were mated with male animals and subjected to embryo isolation at Day 4. Stereomicroscopical evaluation of collected embryos showed that the amount of maternal body fat did not affect the average number of collected embryos per dam. However, significant differences were found in the stage-distribution of isolated embryos: dams with highly elevated body fat and dams with low fat delivered decreased numbers of blastocysts and increased numbers of lower-stage or degenerated embryos compared with dams with physiological or slightly elevated fat value. Fluorescence staining showed that blastocysts isolated from dams with high and low percentage of body fat contained significantly higher numbers of dead cells. Most of such dead cells were of apoptotic origin. In contrast, the amount of maternal body fat did not affect blastocyst growth—the average numbers of cells per blastocyst were comparable in all groups. In conclusion, highly elevated or decreased amount of maternal body fat slowed down the development and negatively affected the quality of naturally in vivo-derived preimplantation embryos. No negative effect of slightly elevated fat was observed.  相似文献   
134.
135.

Background

Small molecule inhibitors of biologically important protein–glycosaminoglycan (GAG) interactions have yet to be identified.

Methods

Compound libraries were screened in an assay of L-selectin–IgG binding to heparin (a species of heparan sulfate [HS-GAG]). Hits were validated, IC-50s established and direct binding of hits to HS-GAGs was investigated by incubating compounds alone with heparin. Selectivity of inhibitors was assessed in 11 different protein-GAG binding assays. Anti-inflammatory activity of selected compounds was evaluated in animal models.

Results

Screening identified a number of structurally-diverse planar aromatic cationic amines. Scaffolds similar to known GAG binders, chloroquine and tilorone, were also identified. Inhibitors displayed activity also against bovine kidney heparan sulfate. Direct binding of compounds to GAGs was verified by incubating compounds with heparin alone. Selectivity of inhibitors was demonstrated in a panel of 11 heparin binding proteins, including selectins, chemokines (IL-8, IP-10), Beta Amyloid and cytokines (VEGF, IL-6). A number of selected lead compounds showed dose-dependent efficacy in peritonitis, paw edema and delayed type hypersensitivity.

Conclusions

A new class of compounds, SMIGs, inhibits protein–GAG interaction by direct binding to GAGs. Although their IC-50s were in the low micro-molar range, SMIGs binding to HS-GAGs appeared to be stable in physiological conditions, indicating high avidity binding. SMIGs may interfere with major checkpoints for inflammatory and autoimmune events.

General significance

SMIGs are a class of structurally-diverse planar aromatic cationic amines that have an unusual mode of action — inhibiting protein–GAG interactions via direct and stable binding to GAGs. SMIGs may have therapeutic potential in inflammatory and autoimmune disorders.  相似文献   
136.
Mesenchymal stem cells (MSCs) have generated a great deal of promise as a potential source of cells for cell-based therapies. Various labeling techniques have been developed to trace MSC survival, migration, and behavior in vitro or in vivo. In the present study, we labeled MSCs derived from rat bone marrow (rMSCs) with florescent membrane dyes PKH67 and DiI, and with nuclear labeling using 5 μM BrdU and 10 μM BrdU. The cells were then cultured for 6 d or passaged (1–3 passages). The viability of rMSCs, efficacy of fluorescent expression, and transfer of the dyes were assessed. Intense fluorescence in rMSCs was found immediately after membrane labeling (99.3?±?1.6% PKH67+ and 98.4?±?1.7% DiI+) or after 2 d when tracing of nuclei was applied (91.2?±?4.6% 10 μM BrdU+ and 77.6?±?4.6% 5 μM BrdU+), which remained high for 6 d. Viability of labeled cells was 91?±?3.8% PKH67+, 90?±?1.5% DiI+, 91?±?0.8% 5 μM BrdU+, and 76.9?±?0.9% 10 μM BrdU+. The number of labeled rMSCs gradually decreased during the passages, with almost no BrdU+ nuclei left at final passage 3. Direct cocultures of labeled rMSCs (PKH67+ or DiI+) with unlabeled rMSCs revealed almost no dye transfer from donor to unlabeled recipient cells. Our results confirm that labeling of rMSCs with PKH67 or DiI represents a non-toxic, highly stable, and efficient method suitable for steady tracing of cells, while BrdU tracing is more appropriate for temporary labeling due to decreasing signal over time.  相似文献   
137.
Bacteria play a central role in animal health. Yet, little is known about the acquisition of bacteria and the extent to which bacteria are acquired from different environmental sources. For example, bird nests host diverse bacteria associated with the eggs, nestlings and nesting material, but previous research has typically focussed on only a limited number of nest components at a time. It therefore remains unknown to what extent bacteria are transmitted between these components. Using both molecular and culture techniques, we characterised nest-associated bacterial assemblages throughout the entire nesting cycle of reed warblers by sampling bacteria on eggs before and during incubation, within nestling faeces, and on the nesting material of post-breeding nests. We found that bacterial assemblages clustered by nest component. Yet some overlap existed between nest components, suggesting that bacterial transmission across components is likely to occur. Eggs and nestlings from the same nest harboured more similar bacteria than expected by chance, suggesting an influence of environment or genetics on bacterial assemblages. Bacterial loads were not lower on incubated eggs. Instead, incubation was associated with a change in the structure of assemblages, including a decrease in potentially-harmful Gram-negative bacteria. In addition we show for the first time, that incubation is associated with the complete extinction of harmful haemolytic bacteria. Overall, our study appears to be the first to demonstrate differences in bacterial assemblages between bird nest components. In addition, we highlight the complexity of nest bacterial assemblages and provide new insights into the benefits of incubation.  相似文献   
138.
139.
To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to higher temperature needed to inactivate the Pat1 kinase. Here, we report an ATP analog-sensitive allele of Pat1 [Pat1(L95A), designated pat1-as2] that can be used to generate synchronous meiotic cultures at physiological temperature. In pat1-as2 meiosis, chromosomes segregate with higher fidelity, and spore viability is higher than in pat1-114 meiosis, although recombination is lower by a factor of 2–3 in these mutants than in starvation-induced pat1+ meiosis. Addition of the mat-Pc gene improved chromosome segregation and spore viability to nearly the level of starvation-induced meiosis. We conclude that pat1-as2 mat-Pc cells offer synchronous meiosis with most tested properties similar to those of wild-type meiosis.  相似文献   
140.
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ~65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113-1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) -mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC(50) 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号