首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2798篇
  免费   181篇
  国内免费   1篇
  2980篇
  2022年   23篇
  2021年   21篇
  2020年   15篇
  2019年   17篇
  2018年   19篇
  2017年   27篇
  2016年   40篇
  2015年   58篇
  2014年   69篇
  2013年   151篇
  2012年   132篇
  2011年   119篇
  2010年   91篇
  2009年   64篇
  2008年   113篇
  2007年   113篇
  2006年   130篇
  2005年   106篇
  2004年   122篇
  2003年   149篇
  2002年   138篇
  2001年   123篇
  2000年   110篇
  1999年   96篇
  1998年   46篇
  1997年   34篇
  1996年   25篇
  1995年   25篇
  1994年   33篇
  1993年   22篇
  1992年   64篇
  1991年   80篇
  1990年   63篇
  1989年   66篇
  1988年   37篇
  1987年   53篇
  1986年   37篇
  1985年   38篇
  1984年   29篇
  1983年   18篇
  1982年   27篇
  1981年   19篇
  1980年   24篇
  1979年   19篇
  1978年   17篇
  1977年   17篇
  1976年   20篇
  1973年   16篇
  1971年   14篇
  1968年   16篇
排序方式: 共有2980条查询结果,搜索用时 15 毫秒
41.
42.
43.
Summary The antitumor effect of recombinant human tumor necrosis factor (rH-TNF) on two clones of rat fibrosarcoma with different metastatic potential to lymph nodes was examined. The colony formation of clone A, which has high metastatic potential, was completely inhibited by continuous exposure to rH-TNF at 50 U/ml. In contrast, colony formation of clone G, which has low metastatic potential, was not inhibited by high concentrations of rH-TNF (10,000 U/ml). The inhibitory effect of rH-TNF on colony formation by clone A was also observed with a 1-h exposure to rH-TNF. This effect was time and concentration dependent, as determined by the colony assay, 3H-thymidine uptake assay, and 51Cr-release assay. 3H-thymidine and 3H-uridine uptake per cell of clone A exposed to rH-TNF was not decreased. This suggests that the mechanisms of the antitumor effect of rH-TNF were not due to inhibition of DNA and RNA synthesis of tumor cells. In vivo growth and lymph node metastases of clone A inoculated i.p. to Donryu strain rats were completely suppressed by 14 consecutive i.p. injections of 105 or 106 U/kg per day of rH-TNF. On the other hand the growth of clone G was not influenced by rH-TNF administration.  相似文献   
44.
A histological study was undertaken to clarify seasonal changes in the spermatogenic epithelium of Japanese macaques. Testicular tissue samples were excised by biopsies from five adult laboratory-maintained males in mating and non-mating seasons. The samples were fixed with Bouin's solution, embedded in paraffin, and stained with PAS and hematoxylin. Microscopic observations on cross-sections of seminiferous tubules revealed that the seminiferous epithelium in the mating season was thicker than in the non-mating season. PAS-stained granules were found in some of the dark A-type spermatogonia, which significantly increased in the non-mating season. Spermatids of the steps preceding the appearance of the acrosomic cap in stages I to III were observed significantly more often than those in the step coinciding with the formation of the acrosomic cap in stage IV. In stage I, the ratio of mature spermatids or spermatozoa to immature spermatids in the mating season was higher than that in the non-mating season. These findings suggest that spermiogenesis, as well as spermatocytogenesis, is inhibited in the non-mating season.  相似文献   
45.
The effect of clipping of the host-plant shoot on the sources of carbon and nitrogen for the arbuscular mycorrhizal (AM) fungus Gigaspora margarita was determined by measuring 13C in spores and hyphae in cocultures of C3 and C4 plants and by differential 15N labeling. C3 and C4 plants, which have different δ13C values, were grown in the same container separated by a series of hyphal compartments. The C3 and C4 plants were applied with 14N- and 15N-urea, respectively. After clipping of the C3 shoots, spore δ 13C gradually approached that of the C4 roots. Hyphal δ 13C paralleled that of spores. Spore % 15N was similar to that of mineral N in the C4 plant compartment. Thus C in G. margarita coming from the clipped plants decreased with time. This demonstrates that C in AM fungi comes from living plants, whilst the N in spores comes mostly from the soil. Accepted: 28 November 2000  相似文献   
46.
Summary Phosphorylases (EC 2.4.1.1) from potato and rabbit muscle are similar in many of their structural and kinetic properties, despite differences in regulation of their enzyme activity. Rabbit muscle phosphorylase is subject to both allosteric and covalent controls, while potato phosphorylase is an active species without any regulatory mechanism. Both phosphorylases are composed of subunits of approximately 100 000 molecular weight, and contain a firmly bound pyridoxal 5-phosphate. Their actions follow a rapid equilibrium random Bi Bi mechanism. From the sequence comparison between the two phosphorylases, high homologies of widely distributed regions have been found, suggesting that they may have evolved from the same ancestral protein. By contrast, the sequences of the N-terminal region are remarkably different from each other. Since this region of the muscle enzyme forms the phosphorylatable and AMP-binding sites as well as the subunit-subunit contact region, these results provide the structural basis for the difference in the regulatory properties between potato and rabbit muscle phosphorylases. Judged from CD spectra, the surface structures of the potato enzyme might be significantly different from that of the muscle enzyme. Indeed, the subunit-subunit interaction in the potato enzyme is tighter than that in the muscle enzyme, and the susceptibility of the two enzymes toward modification reagents and proteolytic enzymes are different. Despite these differences, the structural and functional features of the cofactor, pyridoxal phosphate, site are surprisingly well conserved in these phosphorylases. X-ray crystallographic studies on rabbit muscle phosphorylase have shown that glucose-1-phosphate and orthophosphate bind to a common region close to the 5-phosphate of the cofactor. The muscle enzyme has a glycogen storage site for binding of the enzyme to saccharide substrate, which is located away from the cofactor site. We have obtained, in our reconstitution studies, evidence for binding of saccharide directly to the cofactor site of potato phosphorylase. This difference in the topography of the functional sites explains the previously known different specificities for saccharide substrates in the two phosphorylases. Based on a combination of these and other studies, it is now clear that the 5-phosphate group of pyridoxal phosphate plays a direct role in the catalysis of this enzyme. Information now available on the reaction mechanism of phosphorylase is briefly described.  相似文献   
47.
Higher plants have evolved multiple proteins in the RNase III family to produce and regulate different classes of small RNAs with specialized molecular functions. In rice (Oryza sativa), numerous genomic clusters are targeted by one of two microRNAs (miRNAs), miR2118 and miR2275, to produce secondary small interfering RNAs (siRNAs) of either 21 or 24 nucleotides in a phased manner. The biogenesis requirements or the functions of the phased small RNAs are completely unknown. Here we examine the rice Dicer-Like (DCL) family, including OsDCL1, -3a, -3b and -4. By deep sequencing of small RNAs from different tissues of the wild type and osdcl4-1, we revealed that the processing of 21-nucleotide siRNAs, including trans-acting siRNAs (tasiRNA) and over 1000 phased small RNA loci, was largely dependent on OsDCL4. Surprisingly, the processing of 24-nucleotide phased small RNA requires the DCL3 homolog OsDCL3b rather than OsDCL3a, suggesting functional divergence within DCL3 family. RNA ligase-mediated 5' rapid amplification of cDNA ends and parallel analysis of RNA ends (PARE)/degradome analysis confirmed that most of the 21- and 24-nucleotide phased small RNA clusters were initiated from the target sites of miR2118 and miR2275, respectively. Furthermore, the accumulation of the two triggering miRNAs requires OsDCL1 activity. Finally, we show that phased small RNAs are preferentially produced in the male reproductive organs and are likely to be conserved in monocots. Our results revealed significant roles of OsDCL4, OsDCL3b and OsDCL1 in the 21- and 24-nucleotide phased small RNA biogenesis pathway in rice.  相似文献   
48.
To determine the role of repair of potentially lethal damage (PLD) in the initiation process of neoplastic transformation, Balb/c 3T3 cells treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were temporarily exposed to conditioned medium obtained from density-inhibited Chinese hamster cell cultures, as a post-treatment for the induction of PLD repair. With or without this exposure, cell survival and transformation frequencies were simultaneously determined by colony-formation and focus-formation assays, respectively. Temporary exposure to conditioned medium resulted in a 20-30% increase in cell survival compared with no exposure. Post-treatment with conditioned medium resulted in a 60-65% reduction in transformation frequencies. At the molecular level, the repair of MNNG-induced single-strand breaks of DNA occurred much more rapidly in conditioned medium. These data suggest that PLD repair reduces the in vitro neoplastic transformation through excision repair operative during the cessation of DNA replication. Thus, PLD repair appears to be preventive against neoplastic fixation in initiation of neoplastic development.  相似文献   
49.
Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.  相似文献   
50.
A new affinity labeling reagent for glycogen synthase a from rabbit muscle, uridine diphosphopyridoxal, has been prepared. Incubation of the enzyme with this reagent resulted in a time-dependent, almost complete loss of activity. The inactivation was pseudo-first order, and the results of the kinetic analysis suggested the formation of a noncovalent enzyme-reagent complex prior to the covalent reaction, with a Kinact of 25 microM and a maximal rate constant of 0.22 min-1. The inactivation was pronouncedly protected by UDP-Glc and UDP, but not by the allosteric activator glucose 6-phosphate. The increase in a spectral peak at 425 nm and the decrease in enzymatic activity were well correlated, suggesting that the reagent causes the inactivation of the enzyme by the formation of a Schiff base. The rate of inactivation increased as the pH was raised, giving a pK of 8.85. Almost all the original activity was recovered by the treatment of the inactivated enzyme with cysteamine or any other aminothiol compound. No recovery of the activity, however, was observed with inactivated enzyme which had been treated with NaBH4. A peptide containing the labeled amino acid was isolated for inactivated enzyme after reduction with NaBH4, carboxymethylation, and chymotryptic digestion by fractionation on a Bio-Gel P-6 column and high performance liquid chromatographies. Manual Edman degradation established the sequence as Glu-Val-Ala-Asn-labeled Lys-Val-Gly-Gly-Ile-(Tyr). The introduction of an active site-directing moiety to pyridoxal 5'-phosphate makes the resultant reagent an effective probe for the active site of glycogen synthase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号