首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   24篇
  国内免费   2篇
  2023年   3篇
  2022年   11篇
  2021年   13篇
  2020年   5篇
  2019年   7篇
  2018年   19篇
  2017年   11篇
  2016年   16篇
  2015年   24篇
  2014年   35篇
  2013年   67篇
  2012年   46篇
  2011年   45篇
  2010年   23篇
  2009年   23篇
  2008年   24篇
  2007年   22篇
  2006年   27篇
  2005年   20篇
  2004年   16篇
  2003年   13篇
  2002年   16篇
  2001年   2篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1978年   1篇
排序方式: 共有507条查询结果,搜索用时 15 毫秒
61.
62.
Modulation of levels of polysialic acid (polySia), a sialic acid polymer, predominantly associated with the neural cell adhesion molecule (NCAM), influences neural functions, including synaptic plasticity, neurite growth, and cell migration. Biosynthesis of polySia depends on two polysialyltransferases ST8SiaII and ST8SiaIV in vertebrate. However, the enzyme involved in degradation of polySia in its physiological turnover remains uncertain. In the present study, we identified and characterized a murine sialidase NEU4 that catalytically degrades polySia. Murine NEU4, dominantly expressed in the brain, was found to efficiently hydrolyze oligoSia and polySia chains as substrates in sialidase in vitro assays, and also NCAM-Fc chimera as well as endogenous NCAM in tissue homogenates of postnatal mouse brain as assessed by immunoblotting with anti-polySia antibodies. Degradation of polySia by NEU4 was also evident in neuroblastoma Neuro2a cells that were co-transfected with Neu4 and ST8SiaIV genes. Furthermore, in mouse embryonic hippocampal primary neurons, the endogenously expressed NEU4 was found to decrease during the neuronal differentiation. Interestingly, GFP- or FLAG-tagged NEU4 was partially co-localized with polySia in neurites and significantly suppressed their outgrowth, whereas silencing of NEU4 showed the acceleration together with an increase in polySia expression. These results suggest that NEU4 is involved in regulation of neuronal function by polySia degradation in mammals.  相似文献   
63.
64.
Phosphoinositides (PI) play important regulatory roles in cell physiology. Localization and quantitation of PIs within the cell is necessary to understand their precise function. Currently, ectopic expression of green fluorescent protein (GFP)-fused PI-binding domains is used to visualize PIs localized to the cell membrane. However, ectopically expressed PI-binding domains may compete with endogenous binding proteins, thus altering the physiological functions of the PIs. Here, we establish a novel method for quantification and visualization of PIs in cells and tissue samples using PI-binding domains labeled with quantum dots (Qdot) as specific probes. This method allowed us to simultaneously quantify three distinct PIs, phosphatidylinositol 3,4,5-triphosphatase [PtdIns(3,4,5)P(3)), PtdIns(3,4)P(2), and PtdIns(4,5)P(2), in crude acidic lipids extracted from insulin-stimulated cells. In addition, the method allowed the PIs to be visualized within fixed cells and tissues. Sequential and spatial changes in PI production and distribution were detected in platelet-derived growth factor (PDGF)-stimulated NRK49F cells. We also observed accumulation of PtdIns(3,4)P(2) at the dorsal ruffle in PDGF-stimulated NIH3T3 cells. Finally, we found PtdIns(3,4,5)P(3) was enriched in lung cancer tissues, which also showed high levels of phosphorylated Akt. Our new method to quantify and visualize PIs is expected to provide further insight into the role of lipid signaling in a wide range of cellular events.  相似文献   
65.
Yuan Z  Chu G  Dan Y  Li J  Zhang L  Gao X  Gao H  Li J  Xu S  Liu Z 《Molecular biology reports》2012,39(6):6625-6631
Bovine mastitis is a very complex and common disease of dairy cattle and a major source of economic losses to the dairy industry worldwide. In this study, the bovine breast cancer 1, early onset gene (BRCA1) was taken as a candidate gene for mastitis resistance. The main object of this study was to investigate whether the BRCA1 gene was associated with mastitis in cattle. Through DNA sequencing, Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) and Created Restriction Site PCR (CRS-PCR) methods, three SNPs (G22231T, T25025A, and C28300A) were detected and twenty-four combinations of these SNPs were observed. The single SNP and their genetic effects on somatic cell score (SCS) were evaluated and a significant association with SCS was found in C28300A. The mean of genotype EE was significantly lower than those of genotypes EF and FF. The results of combined genotypes analysis of three SNPs showed that BBDDFF genotype with the highest SCS were easily for the mastitis susceptibility, whereas AACCEE genotype with the lowest SCS were favorable for the mastitis resistance. The information provided in the present study will be very useful for improving mastitis resistance in dairy cattle by marker-assisted selection.  相似文献   
66.
Gangliosides mediate neuronal differentiation and maturation and are indispensable for the maintenance of brain function and survival. As part of our ongoing efforts to understand signaling pathways related to ganglioside function, we recently demonstrated that neuronal cells react to exogenous gangliosides GT1b and GD1b. Both of these gangliosides are enriched in the synapse-forming area of the brain and induce Ca(2+) release from intracellular stores, activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and activation of cdc42 to promote reorganization of cytoskeletal actin and dendritic differentiation. Here, we show that bradykinin B2 receptors transduce these reactions as a mediator for ganglioside glycan signals. The B2 antagonist Hoe140 inhibited ganglioside-induced CaMKII activation, actin reorganization and early development of axon- and dendrite-like processes of primary cultured hippocampal neurons. Furthermore, we confirmed by yeast reporter assay that major b-series gangliosides, GT1b, GD1b and GD3, stimulated B2 bradykinin receptors. We hypothesize that this B2 receptor-mediated ganglioside signal transduction pathway is one mechanism that modulates neuronal differentiation and maturation.  相似文献   
67.
Lipid metabolism in a child may be altered when the mother has a high-fat diet (HFD), but it is unclear whether the lipid metabolism of future offspring (grandchildren) is also changed under these circumstances. In this study, we examined the influence of intake of an HFD beyond one generation on offspring in normal mice. Parent mice fed an HFD were bred and the resultant second and third generations were also fed an HFD. The diets used in the study had approximately 20% more energy than a standard chow diet. Changes in lipid metabolism were examined in each generation. Intake of an HFD from generation to generation promoted lipid accumulation in the white adipose tissue of female mice, increased lipid, glucose and insulin levels in the serum, increased the activities of enzymes associated with fatty acid metabolism in the liver, promoted lipid accumulation in hepatocytes and adipocytes and increased the mRNA levels of Cdkn1a in the liver and white adipose tissue. These results suggest that activation of Cdkn1a promoted lipid accumulation in the liver and white adipose tissue of third-generation female mice that were offspring from earlier generations fed HFDs. Moreover, intake of a high-energy diet beyond one generation led to offspring with obesity, fatty liver and hyperinsulinemia.  相似文献   
68.
Membrane-anchored receptor-like protein kinases (RLKs) recognize extracellular signals at the cell surface and activate the downstream signaling pathway by phosphorylating specific target proteins. We analyzed a receptor-like cytosolic kinase (RLCK) gene, ARCK1, whose expression was induced by abiotic stress. ARCK1 belongs to the cysteine-rich repeat (CRR) RLK sub-family and encodes a cytosolic protein kinase. The arck1 mutant showed higher sensitivity than the wild-type to ABA and osmotic stress during the post-germinative growth phase. CRK36, an abiotic stress-inducible RLK belonging to the CRR RLK sub-family, was screened as a potential interacting factor with ARCK1 by co-expression analyses and a yeast two-hybrid system. CRK36 physically interacted with ARCK1 in plant cells, and the kinase domain of CRK36 phosphorylated ARCK1 in vitro. We generated CRK36 RNAi transgenic plants, and found that transgenic plants with suppressed CRK36 expression showed higher sensitivity than arck1-2 to ABA and osmotic stress during the post-germinative growth phase. Microarray analysis using CRK36 RNAi plants revealed that suppression of CRK36 up-regulates several ABA-responsive genes, such as LEA genes, oleosin, ABI4 and ABI5. These results suggest that CRK36 and ARCK1 form a complex and negatively control ABA and osmotic stress signal transduction.  相似文献   
69.
In this study, we compared the cytotoxic effects of natural conjugated linolenic acids (CLnAs) on human adenocarcinoma cells (DLD-1) in vitro, with the goal of finding CLnA isomers with strong cytotoxic effects. The antitumor effect of the CLnA with the strongest cytotoxic effect was then examined in mice. The results showed that all CLnA isomers have strong cytotoxic effects on DLD-1 cells, with jacaric acid (JA) having the strongest effect. Examination of the mechanism of cell death showed that CLnAs induce apoptosis in DLD-1 cells via lipid peroxidation. The intracellular levels of incorporated CLnAs were measured to examine the reason for differences in cytotoxic effects. These results showed that JA was taken into cells efficiently. Collectively, these results suggest that the cytotoxic effect of CLnAs is dependent on intracellular incorporation and induction of apoptosis via lipid peroxidation. JA also had a strong preventive antitumor effect in vivo in nude mice into which DLD-1 cells were transplanted. These results suggest that JA can be used as a dietary constituent for prevention of cancer.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号