首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   24篇
  国内免费   2篇
  2023年   3篇
  2022年   11篇
  2021年   13篇
  2020年   5篇
  2019年   7篇
  2018年   19篇
  2017年   11篇
  2016年   16篇
  2015年   24篇
  2014年   35篇
  2013年   67篇
  2012年   46篇
  2011年   45篇
  2010年   23篇
  2009年   23篇
  2008年   24篇
  2007年   22篇
  2006年   27篇
  2005年   20篇
  2004年   16篇
  2003年   13篇
  2002年   16篇
  2001年   2篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1978年   1篇
排序方式: 共有507条查询结果,搜索用时 15 毫秒
51.
Several autoinflammatory disorders are associated with missense mutations within the nucleotide-binding oligomerization domain of cryopyrin. The mechanism by which cryopyrin mutations cause inflammatory disease remains elusive. To understand the molecular bases of these diseases, we generated constructs to express three common cryopyrin disease-associated mutations, R260W, D303N, and E637G, and compared their activity with that of the wild-type protein. All cryopyrin mutant proteins tested were found to induce potent NF-kappaB activity when compared with the wild-type protein. This activation was dependent on the expression of ASC, an adaptor protein previously suggested to mediate cryopyrin signaling. When the disease-associated mutants were expressed in monocytic THP-1 cells (which express endogenous ASC), each induced spontaneous IL-1beta secretion, whereas wild-type protein did not. In the absence of stimuli, wild-type cryopyrin was unable to bind to ASC, whereas the three mutants coimmunoprecipitated with ASC, suggesting a mechanism involved in the constitutive activation of mutant proteins. The induction of cryopyrin activity by enforced oligomerization in THP-1 cells resulted in ASC binding and the secretion of IL-1beta, an effect that was abolished by the inhibition of ASC expression with small interfering RNAs. Thus, cryopyrin-mediated IL-1beta secretion requires ASC in monocytic cells. Further, these results indicate that cryopyrin disease-associated mutants are constitutively active and able to induce NF-kappaB activation and IL-1beta secretion at least in part by an increased ability to interact with ASC.  相似文献   
52.
We examined mechanisms of FITC-albumin uptake by alveolar type II epithelial cells using cultured RLE-6TN cells. Alkaline phosphatase activity and the expression of cytokeratin 19 mRNA, which are characteristic features of alveolar type II epithelial cells, were detected in RLE-6TN cells. The uptake of FITC-albumin by the cells was time and temperature dependent and showed the saturation kinetics of high- and low-affinity transport systems. FITC-albumin uptake was inhibited by native albumin, by chemically modified albumin, and by metabolic inhibitors and bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase. Confocal laser scanning microscopic analysis after FITC-albumin uptake showed punctate localization of fluorescence in the cells, which was partly localized in lysosomes. FITC-albumin taken up by the cells gradually degraded over time, as shown by fluoroimage analyzer after SDS-PAGE. The uptake of FITC-albumin by RLE-6TN cells was not inhibited by nystatin, indomethacin, or methyl-beta-cyclodextrin (inhibitors of caveolae-mediated endocytosis) but was inhibited by phenylarsine oxide and chlorpromazine (inhibitors of clathrin-mediated endocytosis) in a concentration-dependent manner. Uptake was also inhibited by potassium depletion and hypertonicity, conditions known to inhibit clathrin-mediated endocytosis. These results indicate that the uptake of FITC-albumin in cultured alveolar type II epithelial cells, RLE-6TN, is mediated by clathrin-mediated but not by caveolae-mediated endocytosis, and intracellular FITC-albumin is gradually degraded in lysosomes. Possible receptors involved in this endocytic system are discussed.  相似文献   
53.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   
54.
55.
Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) is an adaptor molecule that has recently been implicated in the activation of caspase-1. We have studied the role of ASC in the host defense against the intracellular pathogen Listeria monocytogenes. ASC was found to be essential for the secretion of IL-1beta/IL-18, but dispensable for IL-6, TNF-alpha, and IFN-beta production, in macrophages infected with Listeria. Activation of caspase-1 was abolished in ASC-deficient macrophages, whereas activation of NF-kappaB and p38 was unaffected. In contrast, secretion of IL-1beta, IL-6, and TNF-alpha was reduced in TLR2-deficient macrophages infected with Listeria; this was associated with impaired activation of NF-kappaB and p38, but normal caspase-1 processing. Analysis of Listeria mutants revealed that cytosolic invasion was required for ASC-dependent IL-1beta secretion, consistent with a critical role for cytosolic signaling in the activation of caspase-1. Secretion of IL-1beta in response to lipopeptide, a TLR2 agonist, was greatly reduced in ASC-null macrophages and was abolished in TLR2-deficient macrophages. These results demonstrate that TLR2 and ASC regulate the secretion of IL-1beta via distinct mechanisms in response to Listeria. ASC, but not TLR2, is required for caspase-1 activation independent of NF-kappaB in Listeria-infected macrophages.  相似文献   
56.
The 5′-untranslated leader sequence (UTLS) of the slpA gene from Lactobacillus acidophilus contributes to mRNA stabilization by producing a 5′ stem and loop structure, and a high-level expression system for the lactic acid bacteria was developed using the UTLS in this study. A plasmid, which expresses α-amylase under the control of the ldh promoter, was constructed by integrating the core promoter sequence with the UTLS. The role of the UTLS in increasing the copies of the α-amylase mRNA was proved by measuring α-amylase activity in the culture supernatant and the relative expression of α-amylase mRNA was determined by the quantitative real-time PCR analysis. Moreover, several expression systems were constructed by combining the core promoter sequence with the UTLS or with the partially deleted UTLS and the expression level was evaluated. The use of the UTLS led to the success in improving α-amylase expression in the two strains of Lactobacillus casei and Lactococcus lactis. The current study showed that the improvement in protein production using the UTLS could be applied to the expression system in the lactic acid bacteria.  相似文献   
57.
58.
59.
60.
A site-specific isotope labeling technique of long RNA molecules was established. This technique is comprised of two simple enzymatic reactions, namely a guanosine transfer reaction of group I self-splicing introns and a ligation with T4 DNA ligase. The trans-acting group I self-splicing intron with its external cofactor, 'isotopically labeled guanosine 5'-monophosphate' (5'-GMP), steadily gave a 5'-residue-labeled RNA fragment. This key reaction, in combination with a ligation of 5'-remainder non-labeled sequence, allowed us to prepare a site-specifically labeled RNA molecule in a high yield, and its production was confirmed with (15)N NMR spectroscopy. Such a site-specifically labeled RNA molecule can be used to detect a molecular interaction and to probe chemical features of catalytically/structurally important residues with NMR spectroscopy and possibly Raman spectroscopy and mass spectrometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号