首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   84篇
  国内免费   66篇
  2024年   4篇
  2023年   16篇
  2022年   30篇
  2021年   80篇
  2020年   38篇
  2019年   52篇
  2018年   48篇
  2017年   35篇
  2016年   53篇
  2015年   70篇
  2014年   79篇
  2013年   73篇
  2012年   109篇
  2011年   96篇
  2010年   47篇
  2009年   38篇
  2008年   52篇
  2007年   41篇
  2006年   34篇
  2005年   28篇
  2004年   29篇
  2003年   22篇
  2002年   12篇
  2001年   9篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   8篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1183条查询结果,搜索用时 15 毫秒
901.
Developing low‐cost and efficient electrocatalysts for the oxygen evolution reaction and oxygen reduction reaction is of critical significance to the practical application of some emerging energy storage and conversion devices (e.g., metal–air batteries, water electrolyzers, and fuel cells). Lithium cobalt oxide is a promising nonprecious metal‐based electrocatalyst for oxygen electrocatalysis; its activity, however, is still far from the requirements of practical applications. Here, a new LiCoO2‐based electrocatalyst with nanosheet morphology is developed by a combination of Mg doping and shear force‐assisted exfoliation strategies toward enhanced oxygen reduction and evolution reaction kinetics. It is demonstrated that the coupling effect of Mg doping and the exfoliation can effectively modulate the electronic structure of LiCoO2, in which Co3+ can be partially oxidized to Co4+ and the Co–O covalency can be enhanced, which is closely associated with the improvement of intrinsic activity. Meanwhile, the unique nanosheet morphology also helps to expose more active Co species. This work offers new insights into deploying the electronic structure engineering strategy for the development of efficient and durable catalysts for energy applications.  相似文献   
902.
903.
904.
为阐明氨基脱氧分支酸合成酶(ADC合成酶)在Corynebacterium glutamicum SYPS-062体内积累L-丝氨酸过程中的作用,通过交叉PCR以及同源重组的方法敲除叶酸途径关键酶ADC合成酶的编码基因pabAB,构建了叶酸缺陷型菌株Corynebacterium glutamicum SYPS-062△pabAB,同时构建pabAB基因增强表达重组菌C.glutamicum SYPS-062(pJC Ⅰ-pabAB).分别考察了ADC合成酶对菌株生长的影响、对L-丝氨酸降解途径关键酶丝氨酸羟甲基转移酶(SHMT)的影响以及其对L-丝氨酸积累的影响.结果表明,与出发菌株相比,增强表达基因pabAB重组菌的ADC合成酶的酶活力提高了33%.SHMT酶的酶活力提高了30%,其最大比生长速率(μm)提高了48%,单位细胞产酸率(Yp/x)降低了36.2%;而敲除基因pabAB重组菌的ADC合成酶的酶活力降低了61%.SHMT酶的酶活力降低了20%,最大比生长速率降低了32%,单位细胞产酸率提高了12%.  相似文献   
905.
Dou Z  Xu J  Jiao JH  Ma Y  Durako S  Yu L  Zhao Y  Zhang F 《PloS one》2011,6(8):e22707

Background

Since it was initiated in 2002, the China Free Antiretroviral Treatment (ART) Program has been progressing from an emergency response to a standardized treatment and care system. As of December 31, 2009, a total of 81,880 patients in 31 provinces, autonomous regions, and special municipalities received free ART. Gender differences, however, in mortality and immunological response to ART in this cohort have never been described.

Objective

To understand whether women and men who enrolled in the China National Free ART Program responded equally well to the treatment.

Methods

A retrospective analysis of the national free ART databases from June 2006–December 2008 was performed. HIV-infected subjects who were 18 years or older, ART naïve at baseline, and on a 3TC regimen enrolled in the program from June 1 to December 31, 2006, were included in this study, then followed up to 2 years.

Results

Among 3457 enrolled subjects who met the inclusion criteria, 59.2% were male and 40.8% female. The majority of the subjects were 19–44 years old (77%) and married (72%). Over the full 24 months of follow-up, the mortality rate was 19.0% in males and 11.4% in females (p = 0.0014). Males on therapy for 3–24 months were more likely to die than females (HR = 1.46, 95% CI: 1.04–2.06, p = 0.0307) after adjusting for baseline characteristics. Compared to men, women had higher CD4+ counts over time after initiating ART (p<0.0001).

Conclusions

Our study showed that women had an overall lower mortality and higher CD4+ counts than men in response to ART treatment, which may be attributed to adherence, biological factors, social, cultural and economic reasons. Further study is needed to explore these factors that might contribute to the gender differences in mortality and immunological response to ART.  相似文献   
906.
Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production. We discuss the process economics and the “distributed manufacturing” approach we have taken to provide the vaccine at globally-relevant scale and with international security of supply. Together, these approaches have enabled the largest viral vector manufacturing campaign to date, providing a substantial proportion of global COVID-19 vaccine supply at low cost.  相似文献   
907.
In this study, we report a bacterium, Achromobacter sp. TY3-4, capable of concurrently removing Mn (II) and Cr (VI) under oxic condition. TY3-4 reduced as much as 2.31?mM of Cr (VI) to Cr (III) in 70?h, and oxidized as much as 20?mM of Mn(II) to Mn oxides in 80?h. When 0.58?mM Cr (VI) and 10?mM Mn(II) were present together, both Cr(VI) and Mn(II) were completely removed by TY3-4 and the generated precipitates are MnIIIOOH, MnIII,IV3O4, MnIVO2 and CrIII(OH)3. Experiments also show that both biosroption and bioreduction of Mn(II) are the driving forces for Mn(II) removal, whereas bioreduction of Cr(VI) is the driving force for Cr(VI) removal. On the basis of these results, a possible reaction was proposed that TY3-4 concurrently reduces Cr(VI) and oxidizes Mn(II). This study is fundamental for Mn and Cr cycles. The strain shows potential for practical application.  相似文献   
908.
909.
910.

Background

Patients undergoing maintenance dialysis are at increased risk of stroke, however, less is known about the prevalence and impact on stroke in the patients.

Methods

In this prospective cohort study, 590 patients undergoing hemodialysis (HD; n = 285) or peritoneal dialysis (PD; n = 305) from January 1, 2008 to December 31, 2012 were recruited. Baseline demographic, clinical, and laboratory data were collected. Timeline incidence data were analyzed using a Poisson model. The Cox proportional hazards regression assessed adjusted differences in stroke risk, a multivariate analysis was also performed.

Results

62 strokes occurred during 1258 total patient-years of follow-up. Stroke occurred at a rate of 49.2/1,000 patient-years with a predominance in HD patients compared with PD patients (74.0 vs. 31.8/1,000 patient-years). The cumulative hazard of developing stroke was significantly higher in HD patients (hazard ratio [HR], 1.75; 95% confidence interval [CI], 1.15–3.62; p = 0.046) after adjusting for potential confounders. HD patients had an increased risk of ischemic stroke (HR, 2.62; 95% CI, 1.56–4.58; p = 0.002). The risk of hemorrhagic stroke was not significantly different between PD and HD patients. On multivariate Cox analysis, risk factors of stroke in both HD and PD patients were older age, diabetes, and cardiovascular disease. Other independent risk factors of stroke were lower albumin-corrected calcium in HD patients and higher triglycerides in PD patients.

Conclusions

Patients undergoing PD were less likely to develop ischemic stroke than those undergoing HD. Comprehensive control of diabetes, cardiovascular disease, calcium-phosphorus metabolism, and triglyceride levels may be useful preventive strategies for stroke in dialysis patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号