首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1497篇
  免费   147篇
  国内免费   66篇
  1710篇
  2024年   5篇
  2023年   23篇
  2022年   49篇
  2021年   76篇
  2020年   52篇
  2019年   56篇
  2018年   60篇
  2017年   35篇
  2016年   59篇
  2015年   91篇
  2014年   110篇
  2013年   108篇
  2012年   125篇
  2011年   131篇
  2010年   59篇
  2009年   60篇
  2008年   75篇
  2007年   62篇
  2006年   46篇
  2005年   59篇
  2004年   37篇
  2003年   34篇
  2002年   27篇
  2001年   19篇
  2000年   28篇
  1999年   29篇
  1998年   7篇
  1997年   14篇
  1996年   21篇
  1995年   10篇
  1994年   14篇
  1993年   3篇
  1992年   19篇
  1991年   10篇
  1990年   16篇
  1989年   12篇
  1988年   12篇
  1987年   4篇
  1986年   8篇
  1985年   9篇
  1984年   8篇
  1983年   7篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有1710条查询结果,搜索用时 0 毫秒
71.
Long non-coding RNAs (lncRNAs) have previously been implicated in human disease states, especially cancer. Although the aberrant expression of lncRNAs has been observed in cancer, the biological functions and molecular mechanisms underlying aberrantly expressed lncRNAs in hepatocellular carcinoma (HCC) have not been widely established. In the present study, we investigated a novel lncRNA, termed URHC (up-regulated in hepatocellular carcinoma), and evaluated its role in the progression of HCC. Expression profiling using a lncRNA microarray revealed that URHC was highly expressed in 3 HCC cell lines compared to normal hepatocytes. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses confirmed that URHC expression was increased in hepatoma cells and HCC tissues. Moreover, using qRT-PCR, we confirmed that URHC expression was up-regulated in 30 HCC cases (57.7%) and that its higher expression was correlated with poor overall survival. We further demonstrated that URHC inhibition reduced cell proliferation and promoted apoptosis. We hypothesize that URHC may function by regulating the sterile alpha motif and leucine zipper containing kinase AZK (ZAK) gene, which is located near URHC on the same chromosome. We found that ZAK mRNA levels were down-regulated in HCC tissues and the expression levels of ZAK were negatively correlated with those of URHC in the above HCC tissues. Next, we confirmed that URHC down-regulated ZAK, which is involved in URHC-mediated cell proliferation and apoptosis. Furthermore, ERK/MAPK pathway inactivation partially accounted for URHC-ZAK-induced cell growth and apoptosis. Thus, we concluded that high URHC expression can promote cell proliferation and inhibit apoptosis by repressing ZAK expression through inactivation of the ERK/MAPK pathway. These findings may provide a novel mechanism and therapeutic targets for the treatment of HCC.  相似文献   
72.
73.
The Massim, a cultural region that includes the southeastern tip of mainland Papua New Guinea (PNG) and nearby PNG offshore islands, is renowned for a trading network called Kula, in which different valuable items circulate in different directions among some of the islands. Although the Massim has been a focus of anthropological investigation since the pioneering work of Malinowski in 1922, the genetic background of its inhabitants remains relatively unexplored. To characterize the Massim genomically, we generated genome-wide SNP data from 192 individuals from 15 groups spanning the entire region. Analyzing these together with comparative data, we found that all Massim individuals have variable Papuan-related (indigenous) and Austronesian-related (arriving ∼3,000 years ago) ancestries. Individuals from Rossel Island in southern Massim, speaking an isolate Papuan language, have the highest amount of a distinct Papuan ancestry. We also investigated the recent contact via sharing of identical by descent (IBD) genomic segments and found that Austronesian-related IBD tracts are widely distributed geographically, but Papuan-related tracts are shared exclusively between the PNG mainland and Massim, and between the Bismarck and Solomon Archipelagoes. Moreover, the Kula-practicing groups of the Massim show higher IBD sharing among themselves than do groups that do not participate in Kula. This higher sharing predates the formation of Kula, suggesting that extensive contact between these groups since the Austronesian settlement may have facilitated the formation of Kula. Our study provides the first comprehensive genome-wide assessment of Massim inhabitants and new insights into the fascinating Kula system.  相似文献   
74.
75.
High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.  相似文献   
76.

Purpose

This study aims at using 18F-FDG microPET to monitor the brown adipose tissue (BAT) glucose metabolism in obese and diabetic mouse models under different interventions, and study the therapeutic potential of BAT activation for weight loss and lowering of blood glucose in these models.

Methods

Obese mice were established by a high-fat diet for eight weeks, and diabetes mellitus(DM) models were induced with Streptozocin in obese mice. 18F-FDG microPET was used to monitor BAT function during obese and DM modeling, and also after BRL37344 (a β3-adrenergic receptor agonist) or levothyroxine treatment. The BAT function was correlated with the body weight and blood glucose levels.

Results

Compared with the controls, the obese mice and DM mice showed successively lower 18F-FDG uptake in the interscapular BAT (P = 0.036 and <0.001, respectively). After two-week BRL37344 treatment, the BAT uptake was significantly elevated in both obese mice (P = 0.010) and DM mice (P = 0.004), accompanied with significantly decreased blood glucose levels (P = 0.023 and 0.036, respectively). The BAT uptake was negatively correlated with the blood glucose levels in both obese mice (r = −0.71, P = 0.003) and DM mice (r = −0.74, P = 0.010). BRL37344 treatment also caused significant weight loss in the obese mice (P = 0.001). Levothyroxine treatment increased the BAT uptake in the control mice (P = 0.025) and obese mice (P = 0.013), but not in the DM mice (P = 0.45).

Conclusion

The inhibited BAT function in obese and DM mice can be re-activated by β3-adrenergic receptor agonist or thyroid hormone, and effective BAT activation may lead to weight loss and blood glucose lowering. Activating BAT can provide a new treatment strategy for obesity and DM.  相似文献   
77.
Backgroundc-Met, a high-affinity receptor for Hepatocyte Growth Factor (HGF), plays a critical role in tumor growth, invasion, and metastasis. Hepatocellular carcinoma (HCC) patients with activated HGF/c-Met signaling have a significantly worse prognosis. Targeted therapies using c-Met tyrosine kinase inhibitors are currently in clinical trials for HCC, although receptor tyrosine kinase inhibition in other cancers has demonstrated early success. Unfortunately, therapeutic effect is frequently not durable due to acquired resistance.MethodsWe utilized the human MHCC97-H c-Met positive (c-Met+) HCC cell line to explore the compensatory survival mechanisms that are acquired after c-Met inhibition. MHCC97-H cells with stable c-Met knockdown (MHCC97-H c-Met KD cells) were generated using a c-Met shRNA vector with puromycin selection and stably transfected scrambled shRNA as a control. Gene expression profiling was conducted, and protein expression was analyzed to characterize MHCC97-H cells after blockade of the c-Met oncogene. A high-throughput siRNA screen was performed to find putative compensatory survival proteins, which could drive HCC growth in the absence of c-Met. Findings from this screen were validated through subsequent analyses.ResultsWe have previously demonstrated that treatment of MHCC97-H cells with a c-Met inhibitor, PHA665752, results in stasis of tumor growth in vivo. MHCC97-H c-Met KD cells demonstrate slower growth kinetics, similar to c-Met inhibitor treated tumors. Using gene expression profiling and siRNA screening against 873 kinases and phosphatases, we identified ErbB3 and TGF-α as compensatory survival factors that are upregulated after c-Met inhibition. Suppressing these factors in c-Met KD MHCC97-H cells suppresses tumor growth in vitro. In addition, we found that the PI3K/Akt signaling pathway serves as a negative feedback signal responsible for the ErbB3 upregulation after c-Met inhibition. Furthermore, in vitro studies demonstrate that combination therapy with PHA665752 and Gefitinib (an EGFR inhibitor) significantly reduced cell viability and increased apoptosis compared with either PHA665752 or Gefitinib treatment alone.Conclusionc-Met inhibition monotherapy is not sufficient to eliminate c-Met+ HCC tumor growth. Inhibition of both c-Met and EGFR oncogenic pathways provides superior suppression of HCC tumor growth. Thus, combination of c-Met and EGFR inhibition may represent a superior therapeutic regimen for c-Met+ HCC.  相似文献   
78.
Iron (Fe) is an essential and important trace element for animals. In order to study its metabolism and relationship with hepcidin, piglet models of Fe-deficiency and Fe-overload were established by intramuscular injection with different doses of Fe-dextran (150 mg Fe/ml) within 1 week of age. Twelve piglets were divided into three groups of four animals: deficiency, regular and overload group, receiving 0 ml, 1 ml and 6 ml Fe-dextran, respectively. The piglets were euthanised at the age of 7 days for analysis. The results showed that the Fe-concentrations in liver, spleen and serum of piglets in the overload group were higher than in the regular and deficiency groups (p < 0.05). In the overload group, several serum biochemical parameters, e.g. globulin, total bilirubin, total cholesterol, high density lipoprotein (HDL), malondialdehyde, glutathione peroxidase (GPx), peroxidase and xanthine oxidase were higher, while alkaline phosphatase (AKP) and triglycerides were lower, compared with the regular group (p < 0.05). The serum concentrations of AKP, total bilirubin and peroxidase in the deficiency group were lower, while HDL and GPx were higher, compared with the regular group (p < 0.05). Hepcidin mRNA abundance was 131 times lower in the liver of piglets with Fe-deficiency, and 7 times higher in the overloaded group than that in the regular group (p < 0.05). In conclusion, Fe-overload and deficiency would influence Fe-metabolism, serum biochemical indexes, oxidation state and hepcidin mRNA abundance in piglet liver.  相似文献   
79.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号