首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2100篇
  免费   100篇
  2022年   12篇
  2021年   29篇
  2020年   5篇
  2019年   26篇
  2018年   20篇
  2017年   17篇
  2016年   40篇
  2015年   58篇
  2014年   93篇
  2013年   98篇
  2012年   135篇
  2011年   128篇
  2010年   70篇
  2009年   68篇
  2008年   152篇
  2007年   121篇
  2006年   116篇
  2005年   123篇
  2004年   136篇
  2003年   136篇
  2002年   125篇
  2001年   33篇
  2000年   29篇
  1999年   40篇
  1998年   29篇
  1997年   19篇
  1996年   15篇
  1995年   21篇
  1994年   20篇
  1993年   22篇
  1992年   25篇
  1991年   29篇
  1990年   14篇
  1989年   14篇
  1988年   21篇
  1987年   12篇
  1986年   10篇
  1985年   19篇
  1984年   20篇
  1983年   15篇
  1982年   22篇
  1981年   9篇
  1980年   7篇
  1979年   15篇
  1978年   5篇
  1977年   5篇
  1975年   4篇
  1974年   5篇
  1972年   2篇
  1971年   2篇
排序方式: 共有2200条查询结果,搜索用时 31 毫秒
161.
Insulin stimulates glucose transport by promoting translocation of GLUT4 proteins from the perinuclear compartment to the cell surface. It has been previously suggested that the microtubule-associated motor protein kinesin, which transports cargo toward the plus end of microtubules, plays a role in translocating GLUT4 vesicles to the cell surface. In this study, we investigated the role of Rab4, a small GTPase-binding protein, and the motor protein KIF3 (kinesin II in mice) in insulin-induced GLUT4 exocytosis in 3T3-L1 adipocytes. Photoaffinity labeling of Rab4 with [gamma-(32)P]GTP-azidoanilide showed that insulin stimulated Rab4 GTP loading and that this insulin effect was inhibited by pretreatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 or expression of dominant-negative protein kinase C-lambda (PKC-lambda). Consistent with previous reports, expression of dominant-negative Rab4 (N121I) decreased insulin-induced GLUT4 translocation by 45%. Microinjection of an anti-KIF3 antibody into 3T3-L1 adipocytes decreased insulin-induced GLUT4 exocytosis by 65% but had no effect on endocytosis. Coimmunoprecipitation experiments showed that Rab4, but not Rab5, physically associated with KIF3, and this was confirmed by showing in vitro association using glutathione S-transferase-Rab4. A microtubule capture assay demonstrated that insulin stimulation increased the activity for the binding of KIF3 to microtubules and that this activation was inhibited by pretreatment with the PI3-kinase inhibitor LY294002 or expression of dominant-negative PKC-lambda. Taken together, these data indicate that (i) insulin signaling stimulates Rab4 activity, the association of Rab4 with kinesin, and the interaction of KIF3 with microtubules and (ii) this process is mediated by insulin-induced PI3-kinase-dependent PKC-lambda activation and participates in GLUT4 exocytosis in 3T3-L1 adipocytes.  相似文献   
162.
163.
Urata J  Shojo H  Kaneko Y 《Biochimie》2003,85(5):493-500
To facilitate blood feeding, hematophagous invertebrates have evolved a sophisticated array of physiological compounds that counteract homeostatic systems and inflammatory reactions of the vertebrate host. For this reason, hematophagous invertebrates possess a variety of anticoagulation components that are inhibitors of coagulant factors or antagonists of the platelet receptor. The examination of kinetic data and the crystal structure analysis have exposed the inhibition mechanisms for many of these anticoagulant reagents. Here, we attempt to classify the antihemostatic molecules and to focus on the kinetic approaches that have been instrumental in defining these mechanisms.  相似文献   
164.
Bacillus circulans strain YUS-2 was isolated as the strongest antioxidant-producer in fermentation of sesame oil cake (SOC, defatted residue yielded from sesame seed oil production). Two major strong antioxidants from fermented SOC were purified and identified as known sesaminol triglucoside and sesaminol diglucoside, however, our results demonstrated that the fermentation process with B. circulans YUS-2 was highly effective to gain the extraction efficiency of the sesaminol glucosides.  相似文献   
165.
The effects of protease inhibitors on the production of recombinant protein were investigated using a recombinant baculovirus containing GFPuv-human beta 1,3-N-acetylglucosaminyltransferase 2 (beta 3GnT2) connected to the prepromelittin signal sequence. The addition of leupeptin as a cysteine protease inhibitor at 2.5 microg/ml improved intra- and extracellular beta 3GnT activities 5- and 3-fold, respectively, compared to those without addition, which was due to a suppression of protease activity. With the leupeptin addition only four degraded molecular bands lower than 32 kDa appeared, but 9 degraded molecular bands between 29 kDa and 41 kDa existed without addition. In contrast, pepstatin A as a carboxyl protease inhibitor had no influence on the improvement of beta 3GnT production, judging from SDS-PAGE. Moreover, when 50 microM carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG-132), known as a proteasome inhibitor, was used in combination with the leupeptin, a ladder of low molecular mass bands of fusion protein was diminished. The intracellular beta 3GnT activity increased 9-fold, to as high as that without addition of two kinds of protease, but the extracellular activity was not different from that with the addition of only leupeptin. These findings indicate that the decrease in cell viability causes the decrease in the secretion rate of intracellular fusion protein, resulting the accumulation of the full-length of fusion protein.  相似文献   
166.
These experiments were done to clarify that the differential effects of thyroxine (T(4)) and triiodothyronine (T(3)) on skeletal muscle protein turnover are caused by their roles on ATP production. Primary cultured chick muscle cells were treated with a physiological level of T(4) (60 ng/ml), T(3) (12 ng/ml), or ATP (0.5 mM) for 6 days and the protein content, ATP production, proteasome activity, and myofibrillar protein breakdown were measured. The protein content measured as an index of cell growth was not affected by T(4), T(3), or ATP. The cellular ATP level was increased by T(3) and ATP, but not by T(4). Proteasome activity and N(tau)-methylhistidine (MeHis) release measured as an index of myofiblillar protein breakdown was also increased by T(3) and ATP, but not by T(4). These results indicate that T(3) but not T(4) increases ATP production followed by an increase in proteasome activity, and thus stimulates myofibrillar proteolysis.  相似文献   
167.
Highly water-soluble glycopolymers with poly(alpha-L-glutamic acid) (PGA) backbones carrying multivalent sialyl oligosaccharides units were chemoenzymatically synthesized as polymeric inhibitors of infection by human influenza viruses. p-Aminophenyl disaccharide glycosides were coupled with gamma-carboxyl groups of PGA side chains and enzymatically converted to Neu5Acalpha2-3Galbeta1-4GlcNAcbeta-, Neu5Acalpha2-6Galbeta1-4GlcNAcbeta-, Neu5Acalpha2-3Galbeta1-3GalNAcalpha-, and Neu5Acalpha2-3Galbeta1-3GalNAcbeta- units, respectively, by alpha2,3- or alpha2,6-sialytransferases. The glycopolymers synthesized were used for neutralization of human influenza A and B virus infection as assessed by measurement of the degree of cytopathic inhibitory effect in virus-infected MDCK cells. Among the glycopolymers tested, alpha2,6-sialo-PGA with a high molecular weight (260 kDa) most significantly inhibited infection by an influenza A virus, strain A/Memphis/1/71 (H3N2), which predominantly binds to alpha2-6 Neu5Ac residue. The alpha2,6-sialo-PGA also inhibited infection by an influenza B virus, B/Lee/40. The binding preference of viruses to terminal sialic acids was affected by core determinants of the sugar chain, Galbeta1-4GlcNAcbeta- or Galbeta1-3GalNAcalpha/beta- units. Inhibition of infection by viruses was remarkably enhanced by increasing the molecular weight and sialic acid content of glycopolymers.  相似文献   
168.
We previously reported that chronic inhibition of nitric oxide (NO) synthesis with N(omega)-nitro-L-arginine methyl ester (L-NAME) induces vascular inflammation at week 1 and produces subsequent arteriosclerosis at week 4 and that cotreatment with an angiotensin-converting enzyme (ACE) inhibitor prevents such changes. In the present study, we tested the hypothesis that treatment with an ACE inhibitor after development of vascular inflammation could inhibit arteriosclerosis in rats. Wistar-Kyoto rats were randomized to four groups: the control group received no drugs, the 4wL-NAME group received L-NAME (100 mg x kg(-1) x day(-1)) for 4 wk, the 1wL + 3wNT group received L-NAME for 1 wk and no treatment for the subsequent 3 wk, and the 1wL + 3wACEI group received L-NAME for 1 wk and the ACE inhibitor imidapril (20 mg x kg(-1) x day(-1)) for the subsequent 3 wk. After 4 wk, we observed significant arteriosclerosis of the coronary artery (medial thickening and fibrosis) and increased cardiac ACE activity in the 1wL + 3wNT group as well as in the 4wL-NAME group, but not in the 1wL + 3wACEI group. In a separate study, we examined apoptosis formation and found that posttreatment with imidapril (20 mg x kg(-1) x day(-1)) or an ANG II AT1-receptor antagonist, CS-866 (5 mg x kg(-1) x day(-1)), induced apoptosis (TdT-mediated nick end-labeling) in monocytes and myofibroblasts appearing in the inflammatory lesions associated with a clear degradation in the heart (DNA electrophoresis). In conclusion, treatment with the ACE inhibitor after 1 wk of L-NAME administration inhibited arteriosclerosis by inducing apoptosis in the cells with inflammatory lesions in this study, suggesting that increased ANG II activity inhibited apoptosis of the cells with inflammatory lesions and thus contributed to the development of arteriosclerosis.  相似文献   
169.
In the early phase of adipocyte differentiation, transient increase of DNA synthesis, called clonal expansion, and transient hyperphosphorylation of retinoblastoma protein (Rb) are observed. We investigated the role of these phenomena in insulin-induced adipocyte differentiation of 3T3-L1 cells. Insulin-induced clonal expansion, Rb phosphorylation and adipocyte differentiation were all inhibited by the PI 3-kinase inhibitors and rapamycin, but not the MEK inhibitor, whereas the MEK inhibitor, but not PI 3-kinase inhibitors or rapamycin, decreased c-fos induction. We conclude that insulin induces hyperphosphorylation of Rb via PI 3-kinase and mTOR dependent pathway, which promotes clonal expansion and adipocyte differentiation of 3T3-L1 cells.  相似文献   
170.
Human erythrocyte protein phosphatase 2A, which comprises a 34-kDa catalytic C subunit, a 63-kDa regulatory A subunit and a 74-kDa regulatory B″ (δ) subunit, was phosphorylated at serine residues of B″ in vitro by cAMP-dependent protein kinase (A-kinase). In the presence and absence of 0.5 μM okadaic acid (OA), A-kinase gave maximal incorporation of 1.7 and 1.0 mol of phosphate per mol of B″, respectively. The Km value of A-kinase for CAB″ was 0.17±0.01 μM in the presence of OA. The major in vitro phosphorylation sites of B″ were identified as Ser-60, -75 and -573 in the presence of OA, and Ser-75 and -573 in the absence of OA. Phosphorylation of B″ did not dissociate B″ from CA, and stimulated the molecular activity of CAB″ toward phosphorylated H1 and H2B histones, 3.8- and 1.4-fold, respectively, but not toward phosphorylase a.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号