首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1691篇
  免费   86篇
  2022年   12篇
  2021年   30篇
  2020年   3篇
  2019年   25篇
  2018年   14篇
  2017年   12篇
  2016年   33篇
  2015年   48篇
  2014年   75篇
  2013年   77篇
  2012年   117篇
  2011年   107篇
  2010年   63篇
  2009年   53篇
  2008年   130篇
  2007年   101篇
  2006年   104篇
  2005年   98篇
  2004年   116篇
  2003年   107篇
  2002年   117篇
  2001年   20篇
  2000年   14篇
  1999年   22篇
  1998年   29篇
  1997年   16篇
  1996年   15篇
  1995年   15篇
  1994年   17篇
  1993年   17篇
  1992年   19篇
  1991年   13篇
  1990年   11篇
  1989年   12篇
  1988年   12篇
  1987年   7篇
  1986年   8篇
  1985年   9篇
  1984年   7篇
  1983年   11篇
  1982年   12篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1977年   6篇
  1975年   5篇
  1974年   3篇
  1972年   2篇
  1971年   2篇
  1965年   2篇
排序方式: 共有1777条查询结果,搜索用时 15 毫秒
11.
The kinetics and specificity of GABA and taurine uptake were studied in the bullfrog sympathetic ganglia. GABA uptake system consisted of simple saturable component and taurine uptake system consisted of two saturable components exclusive of non-saturable influx. Taurine unaffected GABA uptake while GABA inhibited taurine uptake competitively with theK i/Km ratio of 38. GABA (5.14 M) uptake was inhibited by -aminovaleric acid and slightly by 2,4-diaminobutyric acid (5 mM, each) among ten structural analogs. Taurine uptake under high-affinity conditions was most strongly suppressed by hypotaurine and -alanine competitively with theK i/Km ratio of 1.0 and 1.9, respectively. Autoradiography showed that glial cells were heavily labeled by both [3H]GABA and [3H]taurine. These results suggest that GABA is transported by a highly specific carrier system distinct from the taurine carrier and that taurine, hypotaurine, and -alanine may share the same high-affinity carrier system in the glial cells of the bullfrog sympathetic ganglia.  相似文献   
12.
Procedures for the purification of native phytochrome from etiolatedpea seedlings without the use of immuno-purification techniquesare described. Phytochrome (in the PFR form) was purified bypolyethyleneglycol fractionation, adsorption to pentyl agaroseand batch elution, chromatography on DEAE-Sepharose, adsorptionto phenyl Toyopearl and batch elution, and chromatography onRed Toyopearl. The resulting phytochrome had specific absorbanceratios (SAR = A666/A280 of PR) that ranged from 0.55 to 0.6.The subsequent chromatography on Sephacryl S-300 yielded verypure phytochrome with a SAR of 0.98. PR and PFR peaks in thedifference spectrum of the phytochrome were centered at 665and 730 nm, respectively. The spectral change ratio (Ar/Afr)of the difference spectrum was unchanged after the chromatographyon phenyl Toyopearl, and the value was 1.05–1.08, indicatingthat the spectral properties of this preparation were intact.The absorption spectra indicated that the peak absorbance ofPFR was at 728–730 nm and that of PR was at 666–667nm. These peak positions were essentially same as those obtainedwith the undegraded oat phytochrome. Incubation of the samplepurified on Sephacryl S-300 at 25?C for 5 h in either the PRor PFR form did not result in degradation of the molecule. Therate of dark reversion of PFR observed with the purified peaphytochrome was similar to that observed in vivo. The additionof dithionite had no effect on the reversion rate. 2Present address: Fuji-Gotenba, Research Lab. of Chugai PharmaceuticalCo. Ltd., Gotenba, Shizuoka, 412 Japan (Received February 22, 1990; Accepted May 28, 1990)  相似文献   
13.
The recent discovery that point mutations in the beta/A4 amyloid precursor protein may be the cause of certain forms of familial Alzheimer's disease provides strong support for the view that a thorough understanding of the metabolism of this protein may elucidate the pathogenesis of most forms of the disease and thus serve as a basis for rational prevention and therapy. Here we show that overexpression of a portion of the amyloid precursor protein molecule produces at least four distinct fragments of the COOH-terminus of amyloid precursor protein, suggesting altered proteolysis of amyloid precursor protein, and that such overexpression is associated with cytotoxicity. The degree of toxicity in the P19 cell culture model (differentiating mouse embryonal carcinoma cells) is shown to be related to the two larger novel COOH-terminal protein fragments (16 and 14 kilodalton), as well as to levels of expression of these two fragments. The toxicity is manifested in several differentiated cell lineages, including neuronal cells.  相似文献   
14.
Summary To breed industrially useful strains of a slow-growing, red-pigment-producing strain ofMonascus anka, protoplasts ofM. anka MAK1 (arg) andAspergillus oryzae AOK1 (met, thr) were fused. A mixture of protoplasts prepared from mycelia ofM. anka MAK1 treated with 2% Usukizyme and ofA. oryzae AOK1 treated with 2% Usukizyme and 0.2% NovoZym 234 was incubated with 30% (w/v) polyethylene glycol no. 6000. Heterokaryon fusants complementing the auxotrophies of both mutants were isolated on minimal medium, but segregated into red (MAK1) and white (AOK1) sectors after being cultured on a complete medium. After irradiation with UV light, the fusants gave stable heterozygous diploids that formed long white hyphae. These diploids, which had twice as much DNA in the nucleus as their parents, grew more rapidly than the parent strain YZT1, and produced ethanol earlier than the parents. Production of amylase, protease, and kojic acid by the fusants was intermediate in amount between that of the two parents.  相似文献   
15.
Abstract: P19 is a C3H mouse-derived line of multipotent embryonic carcinoma cells that differentiate into neural cells. P19 cell clones overexpressing the three major forms of β-amyloid precursor protein from their cDNA constructs were established. Unlike a previous study in which P19-derived neurons had a limited α-secretase activity, all of these clones produced significant amounts of secreted β-amyloid precursor protein. When treated with retinoic acid, these transformed lines differentiated into neurons and survived better than did nontransformed parental P19 cells. Furthermore, P19-derived neurons survived better in medium conditioned by the transformed P19 line, and survival was reduced by immunoabsorption with an antibody to β-amyloid precursor protein. These results suggest neurotrophic effects of secreted β-amyloid precursor protein and contrast with a previous report in which overexpression of a full-length cDNA for β-amyloid precursor protein led to degeneration of P19-derived neurons. Western blot analysis suggested that this difference might result from different levels of expression of putative neurotoxic C-terminal fragments of β-amyloid precursor protein; moreover, P19-derived neurons differ from P19 stem cells in the processing of these C-terminal fragments.  相似文献   
16.
Abstract: The characteristics of β-alanine transport at the blood-brain barrier were studied by using primary cultured bovine brain capillary endothelial cells. Kinetic analysis of the β-[3H]alanine transport indicated that the transporter for β-alanine functions with Kt of 25.3 ± 2.5 µ M and J max of 6.90 ± 0.48 nmol/30 min/mg of protein in the brain capillary endothelial cells. β-[3H]Alanine uptake is mediated by an active transporter, because metabolic inhibitors (2,4-dinitrophenol and NaN3) and low temperature reduced the uptake significantly. Furthermore, the uptake of β-[3H]alanine required Na+ and Cl in the external medium. Stoichiometric analysis of the transport demonstrated that two sodium ions and one chloride ion are associated with one β-alanine molecule. The Na+ and Cl-dependent uptake of β-[3H]alanine was stimulated by a valinomycin-induced inside-negative K+-diffusion potential. β-Amino acids (β-alanine, taurine, and hypotaurine) inhibited strongly the uptake of β-[3H]alanine, whereas α- and γ-amino acids had little or no inhibitory effect. In ATP-depleted cells, the uptake of β-[3H]alanine was stimulated by preloading of β-alanine or taurine but not l -leucine. These results show that β-alanine is taken up by brain capillary endothelial cells, via the secondary active transport mechanism that is common to β-amino acids.  相似文献   
17.
ATP-Activated Nonselective Cation Current in NG108-15 Cells   总被引:5,自引:0,他引:5  
Abstract: ATP (1 mM) induced a biphasic increase in intracellular Ca2+ concentration ([Ca2+]i), i.e., an initial transient increase decayed to a level of sustained increase, in NG108-15 cells. The transient increase was inhibited by a phospholipase C inhibitor, 1-[6-[[17β-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), whereas the sustained increase was abolished by removal of external Ca2+. We examined the mechanism of the ATP-elicited sustained [Ca2+]i increase using the fura-2 fluorescent method and the whole-cell patch clamp technique. ATP (1 mM) induced a membrane current with the reversal potential of 12.5 ± 0.8 mV (n = 10) in Tyrode external solution. The EC50 of ATP was ~0.75 mM. The permeability ratio of various cations carrying this current was Na+ (defined as 1) > Li+ (0.92 ± 0.01; n = 5) > K+ (0.89 ± 0.03; n = 6) > Rb+ (0.55 ± 0.02; n = 6) > Cs+ (0.51 ± 0.01; n = 5) > Ca2+ (0.22 ± 0.03; n = 3) > N-methyl-d -glucamine (0.13 ± 0.01; n = 5), suggesting that ATP activated a nonselective cation current. The ATP-induced current was larger at lower concentrations of external Mg2+. ATP analogues that induced the current were 2-methylthio-ATP (2MeSATP), benzoylbenzoic-ATP, adenosine 5′-thiotriphosphate (ATPγS), and adenosine 5′-O-(2-thiodiphosphate), but not adenosine, ADP, α,β-methylene-ATP (AMPCPP), β,γ-methylene-ATP (AMPPCP), or UTP. Concomitant with the current data, 2MeSATP and ATPγS, but not AMPCPP or AMPPCP, increased the sustained [Ca2+]i increase. We conclude that ATP activates a class of Ca2+-permeable nonselective cation channels via the P2z receptor in NG108-15 cells.  相似文献   
18.
19.
To manipulate the quantity and quality of storage components in Brassica napus seeds, we have constructed an antisense gene for the storage protein napin. The antisense gene was driven by the 5-flanking region of the B. napus napin gene to express antisense RNA in a seed-specific manner. Seeds of transgenic plants with antisense genes often contained reduced amounts of napin. In some transgenic plants, no accumulation of napin was observed. However, the total protein content of transgenic and wild-type seeds did not differ significantly. Seeds lacking napin accumulated 1.4 to 1.5 times more cruciferin than untransformed seeds, although the oleosin content was not affected. Fatty acid content and composition in the seeds of transgenic plants were also analyzed by gas chromatography. Though the total fatty acid content of the transformants was the same as that of non-transformants, there was a reduction in 18:1 contents and a concomitant increase of 18:2 in seeds with reduced napin levels. This observed change in fatty acid composition was inherited in the next generation.  相似文献   
20.
C4 plants have two carboxylases which function in photosynthesis. One, phosphoenolpyruvate carboxylase (PEPC) is localized in mesophyll cells, and the other, ribulose bisphosphate carboxylase (RuBPC) is found in bundle sheath cells. In contrast, C3 plants have only one photosynthetic carboxylase, RuBPC, which is localized in mesophyll cells. The expression of PEPC in C3 mesophyll cells is quite low relative to PEPC expression in C4 mesophyll cells. Two chimeric genes have been constructed consisting of the structural gene encoding β-glucuronidase (GUS) controlled by two promoters from C4 (maize) photosynthetic genes: (i) the PEPC gene (pepc) and (ii) the small subunit of RuBPC (rbcS). These constructs were introduced into a C3 cereal, rice. Both chimeric genes were expressed almost exclusively in mesophyll cells in the leaf blades and leaf sheaths at high levels, and no or very little activity was observed in other cells. The expression of both genes was also regulated by light. These observations indicate that the regulation systems which direct cell-specific and light-inducible expression of pepc and rbcS in C4 plants are also present in C3 plants. Nevertheless, expression of endogenous pepc in C3 plants is very low in C3 mesophyll cells, and the cell specificity of rbcS expression in C3 plants differs from that in C4 plants. Rice nuclear extracts were assayed for DNA-binding protein(s) which interact with a cis-regulatory element in the pepc promoter. Gel-retardation assays indicate that a nuclear protein with similar DNA-binding specificity to a maize nuclear protein is present in rice. The possibility that differences in pepc expression in a C3 plant (rice) and C4 plant (maize) may be the result of changes in cis-acting elements between pepc in rice and maize is discussed. It also appears that differences in the cellular localization of rbcS expression are probably due to changes in a trans-acting factor(s) required for rbcS expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号