首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   58篇
  国内免费   114篇
  2024年   6篇
  2023年   20篇
  2022年   56篇
  2021年   71篇
  2020年   56篇
  2019年   52篇
  2018年   45篇
  2017年   20篇
  2016年   51篇
  2015年   63篇
  2014年   66篇
  2013年   57篇
  2012年   63篇
  2011年   67篇
  2010年   52篇
  2009年   33篇
  2008年   33篇
  2007年   29篇
  2006年   29篇
  2005年   21篇
  2004年   22篇
  2003年   21篇
  2002年   9篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1987年   1篇
排序方式: 共有972条查询结果,搜索用时 31 毫秒
41.
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.  相似文献   
42.
43.
Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte-like MLO-Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity-dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis-related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO-Y4 cells. The formation, maturation, and osteoclastic bone-resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF-exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone-resorption capability induced by the conditioned medium from 5 G PEMF-exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte-mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).  相似文献   
44.
One major challenge in the bioconversion of lignocelluloses into ethanol is to develop Saccharomyces cerevisiae strains that can utilize all available sugars in biomass hydrolysates, especially the d -xylose and l -arabinose that cannot be fermented by the S. cerevisiae strain naturally. Here, we integrated an l -arabinose utilization cassette (AUC) into the genome of an efficient d -xylose fermenting industrial diploid S. cerevisiae strain CIBTS0735 to make strain CIBTS1972. After evolving on arabinose, CIBTS1974 with excellent fermentation capacity was obtained. A comparison between genome sequences of strains CIBTS1974 and CIBTS1972 revealed that the copy number of the AUC had increased from 1 to 12. We then constructed the AUC null-mutant CIBTS1975 and gradually rescued the l -arabinose utilization defect by integrating AUC iteratively. On the other hand, the parental strain CIBTS0735 was able to acquire the same performance as CIBTS1974 by the direct introduction of 12 copies of the AUC; the performance was further improved by adding two more copies. Besides, we found that not the two transporters present in the AUC were both needed during l -arabinose utilization, GAL2 was necessary and STP2 was not essential. We have described for the first time that a high copy number of AUC is sufficient for the strain to metabolize l -arabinose efficiently independent of evolution.  相似文献   
45.
Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. However, the mechanistic relationships among various genes and signaling pathways are still largely unclear. In this study, we aimed to elucidate potential core candidate genes and pathways in HCC. The expression profiles GSE14520, GSE25097, GSE29721, and GSE62232, which cover 606 tumor and 550 nontumour samples, were downloaded from the Gene Expression Omnibus (GEO) database. Furthermore, HCC RNA-seq datasets were also downloaded from the Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were filtered using R software, and we performed gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using the online databases DAVID 6.8 and KOBAS 3.0. Furthermore, the protein-protein interaction (PPI) network complex of these DEGs was constructed by Cytoscape software, the molecular complex detection (MCODE) plug-in and the online database STRING. First, a total of 173 DEGs (41 upregulated and 132 downregulated) were identified that were aberrantly expressed in both the GEO and TCGA datasets. Second, GO analysis revealed that most of the DEGs were significantly enriched in extracellular exosomes, cytosol, extracellular region, and extracellular space. Signaling pathway analysis indicated that the DEGs had common pathways in metabolism-related pathways, cell cycle, and biological oxidations. Third, 146 nodes were identified from the DEG PPI network complex, and two important modules with a high degree were detected using the MCODE plug-in. In addition, 10 core genes were identified, TOP2A, NDC80, FOXM1, HMMR, KNTC1, PTTG1, FEN1, RFC4, SMC4, and PRC1. Finally, Kaplan-Meier analysis of overall survival and correlation analysis were applied to these genes. The abovementioned findings indicate that the identified core genes and pathways in this bioinformatics analysis could significantly enrich our understanding of the development and recurrence of HCC; furthermore, these candidate genes and pathways could be therapeutic targets for HCC treatment.  相似文献   
46.
47.
前期研究在植物根际促生菌土地类芽胞杆菌(Paenibacillus terrae )NK3-4中发现一个EsxA编码基因,为明确该基因编码的蛋白的性质、结构及系统发生关系,对该基因进行了生物信息学分析。分析表明,该EsxA含有91个氨基酸,分子质量10 276.53 Da,理论pI 5.29,分子式为C445H711N125O146S4,弱酸性,亲水,具有WEG保守基序,属于WXG超级家族成员;建模预测表明,自然状态下EsxA 形成不对称的同源二聚体,其中每个亚基都由一个β折叠连接两个α螺旋组成,两个α螺旋反向平行排列;二聚体中两个亚基的肽链呈反向排列,所有N末端和C末端均暴露在外,形成棒状表面形态,其中一个亚基的N端的不规则卷曲形成与棒状二聚体垂直的短柱形凸起;系统发育分析显示,EsxA在种内及种间进化关系虽是不保守的,但类芽胞杆菌源的EsxA与病原细菌的EsxA同源性较低,暗示类芽胞杆菌源EsxA可能与病原微生物的EsxA具有截然不同的功能。结果为包括NK3-4菌株在内的类芽胞杆菌属EsxA外源分泌表达条件,活性保持及功能的深入研究提供了理论依据。  相似文献   
48.
Nonalcoholic fatty liver disease (NAFLD) is closely associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), which are all complex metabolic disorders. Selenoprotein S (SelS) is an endoplasmic reticulum (ER) resident selenoprotein involved in regulating ER stress and has been found to participate in the occurrence and development of IR and T2DM. However, the potential role and mechanism of SelS in NAFLD remains unclear. Here, we analyzed SelS expression in the liver of high-fat diet (HFD)-fed mice and obese T2DM model (db/db) mice and generated hepatocyte-specific SelS knockout (SelSH-KO) mice using the Cre-loxP system. We showed that hepatic SelS expression levels were significantly downregulated in HFD-fed mice and db/db mice. Hepatic SelS deficiency markedly increased ER stress markers in the liver and caused hepatic steatosis via increased fatty acid uptake and reduced fatty acid oxidation. Impaired insulin signaling was detected in the liver of SelSH-KO mice with decreased phosphorylation levels of insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/Akt), which ultimately led to disturbed glucose homeostasis. Meanwhile, our results showed hepatic protein kinase Cɛ (PKCɛ) activation participated in the negative regulation of insulin signaling in SelSH-KO mice. Moreover, the inhibitory effect of SelS on hepatic steatosis and IR was confirmed by SelS overexpression in primary hepatocytes in vitro. Thus, we conclude that hepatic SelS plays a key role in regulating hepatic lipid accumulation and insulin action, suggesting that SelS may be a potential intervention target for the prevention and treatment of NAFLD and T2DM.Subject terms: Metabolic syndrome, Obesity  相似文献   
49.
GLKs (GOLDEN 2-LIKEs)是一类植物特有的转录因子,靶向调控光合作用相关基因的表达,调控叶绿体的发育、分化并维持其机能,并参与调节果实的营养积累、叶片衰老、免疫反应及逆境胁迫应答等。GLKs受多种激素或环境因子的影响,是植物细胞调控网络的关键节点,也是改造作物光合能力的重要基因。基于国内外在植物GLKs研究中取得的众多进展,文中全面阐述了GLKs基因的生物学功能、分子机制及其育种实践,并构建GLKs介导的信号网络模型,为后期GLKs的理论与应用研究提供借鉴。  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号