全文获取类型
收费全文 | 1162篇 |
免费 | 54篇 |
国内免费 | 3篇 |
专业分类
1219篇 |
出版年
2022年 | 5篇 |
2021年 | 8篇 |
2020年 | 4篇 |
2019年 | 7篇 |
2018年 | 16篇 |
2017年 | 15篇 |
2016年 | 24篇 |
2015年 | 49篇 |
2014年 | 48篇 |
2013年 | 95篇 |
2012年 | 74篇 |
2011年 | 66篇 |
2010年 | 42篇 |
2009年 | 32篇 |
2008年 | 59篇 |
2007年 | 77篇 |
2006年 | 74篇 |
2005年 | 63篇 |
2004年 | 78篇 |
2003年 | 88篇 |
2002年 | 69篇 |
2001年 | 13篇 |
2000年 | 17篇 |
1999年 | 10篇 |
1998年 | 18篇 |
1997年 | 17篇 |
1996年 | 9篇 |
1995年 | 11篇 |
1994年 | 14篇 |
1993年 | 13篇 |
1992年 | 13篇 |
1991年 | 14篇 |
1990年 | 9篇 |
1989年 | 7篇 |
1988年 | 10篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 3篇 |
1982年 | 6篇 |
1981年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1976年 | 3篇 |
1975年 | 5篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1972年 | 3篇 |
1967年 | 2篇 |
排序方式: 共有1219条查询结果,搜索用时 15 毫秒
941.
Matthews JF Skopec CE Mason PE Zuccato P Torget RW Sugiyama J Himmel ME Brady JW 《Carbohydrate research》2006,341(1):138-152
Molecular mechanics (MM) simulations have been used to model two small crystals of cellulose Ibeta surrounded by water. These small crystals contained six different extended surfaces: (110), (11 0), two types of (100), and two types of (010). Significant changes took place in the crystal structures. In both crystals there was an expansion of the unit cell, and a change in the gamma angle to almost orthogonal. Both microcrystals developed a right-hand twist of about 1.5 degrees per cellobiose unit, similar to the twisting of beta-sheets in proteins. In addition, in every other layer, made up of the unit cell center chains, a tilt of the sugar rings of 14.8 degrees developed relative to the crystal plane as a result of a transition of the primary alcohol groups in these layers away from the starting TG conformation to GG. In this conformation, these groups made interlayer hydrogen bonds to the origin chains above and below. No change in the primary alcohol conformations or hydrogen-bonding patterns in the origin chain layers was observed. Strong localization of the adjacent water was found for molecules in the first hydration layer of the surfaces, due to both hydrogen bonding to the hydroxyl groups of the sugar molecules and also due to hydrophobic hydration of the extensive regions of nonpolar surface resulting from the axial aliphatic hydrogen atoms of the 'tops' of the glucose monomers. Significant structuring of the water was found to extend far out into the solution. It is hypothesized that the structured layers of water might present a barrier to the approach of cellulase enzymes toward the cellulose surfaces in enzyme-catalyzed hydrolysis, and might inhibit the escape of soluble products, contributing to the slow rates of hydrolysis observed experimentally. Since the water structuring is different for the different surfaces, this might result in slower hydrolysis rates for some surfaces compared to others. 相似文献
942.
Tsuruga M Taki K Ishii G Sasaki Y Furukawa C Sugihara T Nomura T Ochiai A Magae J 《Radiation research》2007,167(5):592-599
Low-dose-rate radiation modulates various biological responses including carcinogenesis, immunological responses and diabetes. We found that continuous irradiation with low-dose-rate gamma rays ameliorated type II diabetes in db/db mice, diabetic mice that lack leptin receptors. Whole-body exposure of db/db mice to low dose-rate gamma radiation improved glucose clearance without affecting the response to insulin. Histological studies suggested that degeneration of pancreatic islets was significantly suppressed by the radiation. Insulin secretion in response to glucose loading was increased significantly in the irradiated mice. These results suggest that low-dose-rate gamma radiation ameliorates type II diabetes by maintaining insulin secretion, which gradually decreases during the progression of diabetes due to degeneration of pancreatic islets. We also inferred that protection from oxidative damage is involved in the anti-diabetic effect of low-dose-rate gamma rays because expression and activity of pancreatic superoxide dismutase were significantly elevated by low-dose-rate gamma radiation. 相似文献
943.
C Inadomi H Murata Y Ihara S Goto Y Urata J Yodoi T Kondo K Sumikawa 《Biochemical and biophysical research communications》2012,420(3):656-661
The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Çf) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Çf. EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids. 相似文献
944.
Minami Y Kawabata K Kubo Y Arase S Hirasaka K Nikawa T Bando N Kawai Y Terao J 《The Journal of nutritional biochemistry》2009,20(5):389-398
The activation of matrix metalloproteinase (MMP)-9 leading to the formation of wrinkle and sagging of skin is an essential step in the skin photoaging on exposure to ultraviolet A (UVA). This study attempted to elucidate the role of peroxidized cholesterol including cholesterol hydroperoxides (Chol-OOHs), primary products of lipid peroxidation in biomembranes, in MMP-9 activation and the effect of dietary beta-carotene in MMP-9 activation. Hairless mice were subjected to periodic UVA irradiation for 8 weeks. The amount of peroxidized cholesterol detected as total hydroxycholesterol in the skin was increased significantly by the exposure. The activity and protein level of MMP-9 were elevated with wrinkling and sagging formation. MMP-9 activity was also enhanced by the intracutaneous injection of Chol-OOHs into the mouse skin. Adding beta-carotene to the diet of the mice during the period of irradiation suppressed the activity and expression of MMP-9 as well as the wrinkling and sagging formation. The amount of cholesterol 5alpha-hydroperoxide, a singlet molecular oxygen oxygenation-specific peroxidized cholesterol, was significantly lowered by the addition of beta-carotene to the diet. These results strongly suggest that Chol-OOHs formed on exposure to UVA contribute to the expression of MMP-9, resulting in photoaging. Dietary beta-carotene prevents the expression of MMP-9, at least partly, by inhibiting photodynamic action involved in the formation of Chol-OOHs. 相似文献
945.
946.
Sugawara Y Nishii H Takahashi T Yamauchi J Mizuno N Tago K Itoh H 《Cellular signalling》2007,19(6):1301-1308
The heterotrimeric G protein alpha q subunit (Galphaq) mediates a variety of cell functions by activating the effector molecule phospholipase Cbeta. Galphaq activity is regulated by G protein betagamma subunits, G protein-coupled receptors, RGS proteins, and Ric-8. In this study, we identified the lipid raft resident proteins, flotillin-1/reggie-2 and flotillin-2/reggie-1, as Galphaq-binding proteins. The interactions of Galphaq and flotillins were independent of the nucleotide-binding state of Galphaq, and the N-terminal portion of flotillins was critical for the interaction. A short interfering RNA-mediated knockdown of flotillins, particularly flotillin-2, attenuated the UTP-induced activation of p38 mitogen-activated protein kinase (MAPK) but not that of ERK1/2. The activation of p38 MAPK was inhibited by the Src family tyrosine kinase inhibitor PP2 and the cholesterol-depleting agent methyl-beta-cyclodextrin, which is generally used for the disruption of lipid rafts. In contrast, the activation of ERK1/2 was not inhibited by these compounds. These lines of evidence suggested that a Gq-coupled receptor activates specifically p38 MAPK through lipid rafts and Src kinase activation, in which flotillins positively modulate the Gq signaling. 相似文献
947.
Matthew L. Pearn Ingrid R. Niesman Junji Egawa Atsushi Sawada Angels Almenar-Queralt Sameer B. Shah Josh L. Duckworth Brian P. Head 《Cellular and molecular neurobiology》2017,37(4):571-585
Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood–brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury. 相似文献
948.
Junji Inoue Hirofumi Fujita Tetsuya Bando Yoichi Kondo Hiromi Kumon Hideyo Ohuchi 《Journal of molecular histology》2017,48(1):29-39
Dickkopf-related protein 3 (Dkk3) is the third member of the Dkk gene family and identical to the gene, whose expression was reduced in immortalized cells. Therefore, its another name is reduced expression in immortalized cells. Since the intratumoral introduction of Dkk3 inhibits tumor growth in mouse models of cancers, Dkk3 is likely a tumor suppressor gene. However, the functions of Dkk3 in vivo remain unclear. As the first step to decipher the physiological roles of this gene, we examined the expression pattern of Dkk3 in various tissues from adult mice. In situ hybridization showed that Dkk3 mRNA was detected in the brain, retina, heart, gastrointestinal tract, adrenal glands, thymus, prostate glands, seminal vesicles, testes, and ovaries in a regionally specific manner. Furthermore, we raised anti-mouse Dkk3 antibody and performed immunohistochemistry. Cytoplasmic localization of Dkk3 protein was observed in the cells of the adrenal medulla, while Dkk3 immunoreactivity was observed in the lumen of the stomach and intestine, implying that the Dkk3 protein may be secreted into the lumen of the gastrointestinal tract. These results suggest that Dkk3 has pleiotropic roles for a secretory glycoprotein that acts primarily in the gastrointestinal tract, thymus, endocrine and reproductive organs of the mouse. 相似文献
949.
Mina Fujitani Emi Shimizu Junji Ishikawa 《Bioscience, biotechnology, and biochemistry》2017,81(7):1425-1432
We evaluated the effects of difructose anhydride III (DFAIII) on body weights of ovariectomized rats, which are a good model for obesity by estrogen deficiency-induced overeating. Female rats (10 weeks old) were subjected to ovariectomy or sham operation and then fed with or without a diet containing 3% or 6% DFAIII for 33 days or pair-fed control diet during the same period. Rats fed DFAIII showed significantly decreased food intake, energy intake, body weight gain, body energy accumulation, and fat tissue weight than control group, regardless of ovariectomy. DFAIII may decrease body fat dependent of reduced food/energy intake. Compared with the respective pair feeding groups, rats fed DFAIII showed significantly decreased body energy and fat tissue weight, regardless of ovariectomy, suggesting its potential as a low-energy substitute for high-energy sweeteners. The low energy of DFAIII may contribute to decreased body fat, which may not be dependent on obesity. 相似文献
950.
Masahiro Kira Shigetoshi Sano Satoshi Takagi Kunihiko Yoshikawa Junji Takeda Satoshi Itami 《The Journal of biological chemistry》2002,277(15):12931-12936
We previously reported that STAT3 plays a crucial role in transducing a signal for migration of keratinocytes (Sano, S., Itami, S., Takeda, K., Tarutani, M., Yamaguchi, Y., Miura, H., Yoshikawa, K., Akira, S., and Takeda, J. (1999) EMBO J. 18, 4657-4668). To clarify the role of STAT3 in signaling the migration, we studied the intracellular signaling pathway through an integrin receptor in STAT3-deficient keratinocytes. STAT3-deficient keratinocytes demonstrated increased adhesiveness and fast spreading on a collagen matrix. Staining with anti-phosphotyrosine antibody revealed that STAT3-deficient keratinocytes had an increased number of tyrosyl-hyperphosphorylated focal adhesions. Analyses with immunoprecipitation revealed that p130(cas) was constitutively hyperphosphorylated on tyrosine residues, while other focal adhesion molecules such as focal adhesion kinase and paxillin were not. Transfection of STAT3-deficient keratinocytes with an adenoviral vector encoding the wild-type Stat3 gene reversed not only impaired migration but also the increased tyrosine phosphorylation of p130(cas). These results strongly suggest that STAT3 in keratinocytes plays a critical role in turnover of tyrosine phosphorylation of p130(cas), modulating cell adhesiveness to the substratum leading to growth factor-dependent cell migration. 相似文献