首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   11篇
  国内免费   1篇
  356篇
  2022年   3篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   7篇
  2016年   10篇
  2015年   16篇
  2014年   15篇
  2013年   24篇
  2012年   11篇
  2011年   30篇
  2010年   8篇
  2009年   10篇
  2008年   26篇
  2007年   16篇
  2006年   20篇
  2005年   20篇
  2004年   18篇
  2003年   21篇
  2002年   17篇
  2001年   3篇
  2000年   2篇
  1999年   8篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1967年   1篇
  1964年   1篇
  1963年   2篇
  1958年   1篇
排序方式: 共有356条查询结果,搜索用时 0 毫秒
51.
Anti-Smith (anti-Sm) autoantibodies are directed to proteins in the small-nuclear ribonucleoprotein (snRNP) family and are considered specific for systemic lupus erythematosus (SLE) in both humans and mice. We previously established that NOD.c3c4 mice, carrying B6 and B10 congenic segments from chromosomes 3 to 4 on an nonobese diabetic (NOD) background, and NOD.Idd9R28 mice, carrying a B10 segment on c4 alone, developed significant penetrance of anti-Sm antibody production. Here we determine autoantibody incidence in additional NOD.Idd9 congenic strains and use a congenic mapping approach to narrow the interval necessary for enhanced autoantibody production to a ∼5.6-Mb region containing insulin-dependent diabetes (Idd)9.3. The Idd9.3 interval contains the candidate molecule cluster of differentiation (CD)137, which is a member of the tumor necrosis factor (TNF) receptor superfamily, functions as an inducible costimulator of T cells, and controls T–B interactions. The NOD and B10 CD137 alleles have sequence polymorphisms and different functional effects on T cells; the NOD CD137 allele mediates weaker T cell proliferative responses and decreased interleukin (IL)-2 production after CD137-mediated costimulation. Our work establishes CD137 as a candidate gene for control of autoantibody production in NOD.Idd9.3 congenic mice.  相似文献   
52.
A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms’ tumor, clear cell sarcoma of the kidney (CCSK), congenital mesoblastic nephroma (CMN), rhabdoid tumor of the kidney (RTK), and the Ewing’s sarcoma family of tumors (ESFT). By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK), and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms’ tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.  相似文献   
53.
It is now known that multicomponent protein assemblies strictly regulate many protein functions. The S100 protein family is known to play various physiological roles, which are associated with alternative complex formations. To prepare sufficient amounts of heterodimeric S100A8 and S100A9 proteins, we developed a method for bicistronic coexpression from a single-vector system using Escherichia coli cells as a host. The complex formation between S100A8 and S100A9 appears to be dependent on the thermodynamic stability of the protein during expression. The stable S100A8/A9 heterodimer complex spontaneously formed during coexpression, and biologically active samples were purified by cation-exchange chromatography. Semi-stable homodimers of S100A8 and S100A9 were also formed when expressed individually. These results suggest that the assembly of S100 protein complexes might be regulated by expression levels of partner proteins in vivo. Because protein assembly occurs rapidly after protein synthesis, coexpression of relevant proteins is crucial for the design of multicomponent recombinant protein expression systems.  相似文献   
54.
Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.  相似文献   
55.
56.
The LARGE gene is thought to encode a putative glycosyltransferase because of its typical topology. However, no enzyme activity has been demonstrated yet, although the gene apparently supports the functional maturation of alpha-dystroglycan by glycosylation when it is transfected into cells. A novel homologous gene to LARGE was identified and named LARGE2. LARGE2 recombinant was co-expressed with alpha-dystroglycan in human embryonic kidney 293T cells to determine its activity to support the maturation of alpha-dystroglycan. The alpha-dystroglycan co-transfected with LARGE2 was more highly glycosylated than that co-transfected with LARGE. Pull-down experiments demonstrated binding activity of LARGE2 as well as LARGE toward alpha-dystroglycan. LARGE2 was found to support the maturation of alpha-dystroglycan more effectively than LARGE. Both of them are ubiquitously expressed in many tissues, except the brain where LARGE2 was not expressed at all. This compensatory function can explain the residual functionally glycosylated alpha-dystroglycan in a patient with MDC1D whose LARGE genes are congenitally null.  相似文献   
57.
58.
Magnolol, a component of the bark of Magnolia obovata, has been reported to possess various biological activities, such as anti-carcinogenicity, anti-promotion activity and anti-oxidative activity. These findings suggest potential for this compound in cancer chemoprevention. Interestingly, there have been no reports to date on the potential anti-mutagenic activity of magnolol, involving inhibition of initiation processes of the primary stage of carcinogenicity. In this study, anti-mutagenic activity of magnolol against mutagenicity induced by direct mutagens [1-nitropyrene (1-NP), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG)] and indirect mutagens [2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-aminodipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2), benzo(a)pyrene (B(a)P), 2-aminoanthracene (2-AA) and 7,12-dimethylbenz[a]anthracene (DMBA)] were investigated using the bacterial mutagenicity test (Ames test). Results show that magnolol strongly inhibits mutagenicity induced by indirect mutagens, but does not affect direct mutagens. To elucidate the mechanism of this effect against indirect mutagens, effect of magnolol on CYP1A1- and CYP1A2-related enzyme activities of ethoxyresorufin-O-deethylase (EROD) and methoxyresorufin-O-demethylase (MROD) were investigated. Magnolol strongly and competitively suppressed these enzyme activities, suggesting it inhibited mutation induced by indirect mutagens through suppression of CYP1A1 and CYP1A2 activity.  相似文献   
59.
The mature form of l-phenylalanine oxidase (PAOpt) from Pseudomonas sp. P-501 was generated and activated by the proteolytic cleavage of a noncatalytic proenzyme (proPAO). The crystal structures of proPAO, PAOpt, and the PAOpt-o-amino benzoate (AB) complex were determined at 1.7, 1.25, and 1.35A resolutions, respectively. The structure of proPAO suggests that the prosequence peptide of proPAO occupies the funnel (pathway) of the substrate amino acid from the outside of the protein to the interior flavin ring, whereas the funnel is closed with the hydrophobic residues at its vestibule in both PAOpt and the PAOpt-AB complex. All three structures have an oxygen channel that is open to the surface of the protein from the flavin ring. These results suggest that structural changes were induced by proteolysis; that is, the proteolysis of proPAO removes the prosequence and closes the funnel to keep the active site hydrophobic but keeps the oxygen channel open. The possibility that an interaction of the hydrophobic side chain of substrate with the residues of the vestibule region may open the funnel as a putative amino acid channel is discussed.  相似文献   
60.

Abstract

CD1d is a non-polymorphic antigen-presenting glycoprotein that recognizes glycolipids as ligands. Ligands bind to the hydrophobic grooves of CD1d, and the resulting ligand-CD1d complexes activate natural killer T (NKT) cells by means of T cell receptor recognition, leading to the secretion of various cytokines. However, details of the ligand recognition mechanism of a large hydrophobic ligand binding pocket and the relationship between cytokine induction and ligand structure are unclear. We report the synthesis of α-GalCer derivatives containing a Bz amide group having various substituting groups in the ceramide moiety, and the analysis of the structure-activity relationships. The assays reveal that the Bz amide-containing CD1d ligands function as NKT cell modulators displaying Th2 cytokine biasing responses. Furthermore, molecular dynamics simulation studies suggest that the phenyl groups can interact with the aromatic amino acid residues in the lipid binding pocket of CD1d.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号