首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2247篇
  免费   131篇
  2022年   14篇
  2021年   29篇
  2020年   14篇
  2019年   12篇
  2018年   29篇
  2017年   25篇
  2016年   45篇
  2015年   51篇
  2014年   65篇
  2013年   133篇
  2012年   119篇
  2011年   128篇
  2010年   71篇
  2009年   93篇
  2008年   128篇
  2007年   139篇
  2006年   125篇
  2005年   121篇
  2004年   142篇
  2003年   129篇
  2002年   145篇
  2001年   42篇
  2000年   64篇
  1999年   59篇
  1998年   36篇
  1997年   27篇
  1996年   18篇
  1995年   21篇
  1994年   16篇
  1993年   25篇
  1992年   40篇
  1991年   35篇
  1990年   21篇
  1989年   27篇
  1988年   23篇
  1987年   17篇
  1986年   15篇
  1985年   15篇
  1984年   8篇
  1983年   18篇
  1982年   11篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1977年   10篇
  1976年   5篇
  1974年   5篇
  1968年   5篇
  1967年   7篇
排序方式: 共有2378条查询结果,搜索用时 15 毫秒
81.
Glycerol‐3‐phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER‐GPAT and mitochondrial (Mt)‐GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt‐GPAT is essential for mitochondrial fusion. Mutation of Mt‐GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt‐GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP‐1 and by overexpression of mitochondrial fusion protein FZO‐1/mitofusin, suggesting that the fusion/fission balance is affected by Mt‐GPAT depletion. Mitochondrial fragmentation was also observed in Mt‐GPAT‐depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt‐GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt‐GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.  相似文献   
82.
To determine and compare the extent of contamination caused by antimicrobial‐resistant lactic acid bacteria (LAB) in imported and domestic natural cheeses on the Japanese market, LAB were isolated using deMan, Rogosa and Sharpe (MRS) agar and MRS agar supplemented with six antimicrobials. From 38 imported and 24 Japanese cheeses, 409 LAB isolates were obtained and their antimicrobial resistance was tested. The percentage of LAB resistant to dihydrostreptomycin, erythromycin, and/or oxytetracycline isolated from imported cheeses (42.1%) was significantly higher than that of LAB resistant to dihydrostreptomycin or oxytetracycline from cheeses produced in Japan (16.7%; P = 0.04). Antimicrobial resistance genes were detected in Enterococcus faecalis (tetL, tetM, and ermB; tetL and ermB; tetM) E. faecium (tetM), Lactococcus lactis (tetS), Lactobacillus (Lb.), casei/paracasei (tetM or tetW), and Lb. rhamnosus (ermB) isolated from seven imported cheeses. Moreover, these E. faecalis isolates were able to transfer antimicrobial resistance gene(s). Although antimicrobial resistance genes were not detected in any LAB isolates from Japanese cheeses, Lb. casei/paracasei and Lb. coryniformis isolates from a Japanese farm‐made cheese were resistant to oxytetracycline (minimal inhibitory concentration [MIC], 32 µg/mL). Leuconostoc isolates from three Japanese farm‐made cheeses were also resistant to dihydrostreptomycin (MIC, 32 to > 512 µg/mL). In conclusion, the present study demonstrated contamination with antimicrobial‐resistant LAB in imported and Japanese farm‐made cheeses on the Japanese market, but not in Japanese commercial cheeses.  相似文献   
83.
Changes in cell wall polysaccharides in oat (Avena sativa L.) leaf segments during senescence promoted by methyl jasmonate (JA-Me) were studied. During the incubation with water at 25 °C in the dark, the loss of chlorophyll of the segments excised from the primary leaves of 8-day-old green seedlings was found dramatically just after leaf excision, and leaf color completely turned to yellow after the 3- to 4-day incubation in the dark. Application of 10 µM JA-Me substantially promoted the loss of chlorophyll corresponding with the chloroplast degradation. Cell wall polysaccharides in oat leaf segments mainly consisted of hemicellulosic and cellulosic ones. During the process of leaf senescence, the amount of hemicellulosic I and II, and cellulosic polysaccharides decreased, but little in pectic polysaccharides. JA-Me significantly enhanced the decrease in cellulosic polysaccharides, but little in hemicellulosic ones. Arabinose, xylose and glucose were identified as main constituents of neutral sugars of hemicellulosic polysaccharides. The neutral sugar compositions of hemicellulosic polysaccharides changed little during leaf senescence both in the presence or absence of JA-Me. These facts suggest that JA-Me affects sugar metabolism relating to cellulosic polysaccharides during leaf senescence.  相似文献   
84.
Abnormally high concentrations of extracellular glutamate in the brain may cause neuronal damage via excitotoxicity. Thus, tight regulation of glutamate release is critical to neuronal function and survival. Excitotoxicity is caused mainly by overactivation of the extrasynaptic NMDA receptor (NMDAR) and results in specific cellular changes, including calcium-induced activation of calpain proteases. Here, we report that presenilin-1 (PS1) null mouse cortical neuronal cultures have increased amounts of calpain-dependent spectrin breakdown products (SBDPs) compared with WT cultures. NMDAR antagonists blocked accumulation of SBDPs, suggesting abnormal activation of this receptor in PS1 null cultures. Importantly, an increase in SBDPs was detected in cultures of at least 7 days in vitro but not in younger cultures. Conditioned medium from PS1 null neuronal cultures at 8 days in vitro contained higher levels of glutamate than medium from WT cultures and stimulated production of SBDPs when added to WT cultures. Use of glutamate reuptake inhibitors indicated that accumulation of this neurotransmitter in the media of PS1 null cultures was due to increased rates of release. PS1 null neurons showed decreased cell surface expression and phosphorylation of the GluN2B subunit of NMDAR, indicating decreased amounts of extrasynaptic NMDAR in the absence of PS1. Inhibition of γ-secretase activity in WT neurons caused changes similar to those observed in PS1 null neurons. Together, these data indicate that the PS1/γ-secretase system regulates release of glutamate, tyrosine phosphorylation, and surface expression of GluN2B-containing NMDARs.  相似文献   
85.
In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0–5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed.  相似文献   
86.
87.
88.
89.
The aqueous extract of dried bonito (Katsuobushi) was distilled under reduced pressure. The resulting distillate with diethyl ether and the extract was separated into acidic, phenolic, basic and neutral fractions. The neutral fraction was further fractionated into ten sub-fractions by silica gel column chromatography. All these sub-fractions were analyzed by gas chromatography and gas chromatography-mass spectrometry.

One hundred and sixty-five compounds were identified and 12 compounds were tentatively identified from the neutral fraction. Among them, 111 compounds were newly identified as flavor components of Katsuobushi.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号