首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   48篇
  699篇
  2022年   7篇
  2021年   14篇
  2020年   4篇
  2019年   16篇
  2018年   4篇
  2017年   5篇
  2016年   15篇
  2015年   29篇
  2014年   35篇
  2013年   29篇
  2012年   46篇
  2011年   47篇
  2010年   34篇
  2009年   23篇
  2008年   49篇
  2007年   26篇
  2006年   33篇
  2005年   18篇
  2004年   18篇
  2003年   18篇
  2002年   11篇
  2001年   10篇
  2000年   9篇
  1999年   17篇
  1998年   4篇
  1997年   10篇
  1996年   7篇
  1995年   12篇
  1994年   8篇
  1993年   7篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1989年   16篇
  1988年   3篇
  1987年   6篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1979年   8篇
  1978年   7篇
  1977年   10篇
  1976年   4篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
  1969年   3篇
排序方式: 共有699条查询结果,搜索用时 15 毫秒
21.
22.
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.  相似文献   
23.
The effect of ginseng sapogenins, aglycone parts of ginsenosides, against oxidative damage by radical generator, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH), in renal epithelial LLC-PK(1) cells was investigated to identify the structural characteristics of sapogenins to have renoprotective effects. Of the tested sapogenins, Δ(20(21))-protopanaxatriol showed the strongest protective effect against the AAPH-induced LLC-PK(1) cell damage. Based on the structure and stronger activity of Δ(20(21))-protopanaxatriol than the other sapogenins, the hydroxyl group in C-6 and double bond in C-20(21) position were important for renoprotective effect of sapogenin against oxidative stress.  相似文献   
24.
Nonenzymatic modification of proteins is one of the key pathogenic factors in diabetic complications. Uncovering the mechanisms of protein damage caused by glucose is fundamental to understanding this pathogenesis and in the development of new therapies. We investigated whether the mechanism involving reactive oxygen species can propagate protein damage in glycation reactions beyond the classical modifications of lysine and arginine residues. We have demonstrated that glucose can cause specific oxidative modification of tryptophan residues in lysozyme and inhibit lysozyme activity. Furthermore, modification of tryptophan residues was also induced by purified albumin-Amadori, a ribose-derived model glycation intermediate. The AGE inhibitor pyridoxamine (PM) prevented the tryptophan modification, whereas another AGE inhibitor and strong carbonyl scavenger, aminoguanidine, was ineffective. PM specifically inhibited generation of hydroxyl radical from albumin-Amadori and protected tryptophan from oxidation by hydroxyl radical species. We conclude that oxidative degradation of either glucose or the protein-Amadori intermediate causes oxidative modification of protein tryptophan residues via hydroxyl radical and can affect protein function under physiologically relevant conditions. This oxidative stress-induced structural and functional protein damage can be ameliorated by PM via sequestration of catalytic metal ions and scavenging of hydroxyl radical, a mechanism that may contribute to the reported therapeutic effects of PM in the complications of diabetes.  相似文献   
25.
26.
27.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   
28.
29.
30.
Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号