首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   30篇
  国内免费   1篇
  609篇
  2022年   8篇
  2021年   9篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   18篇
  2016年   14篇
  2015年   30篇
  2014年   43篇
  2013年   38篇
  2012年   60篇
  2011年   58篇
  2010年   35篇
  2009年   25篇
  2008年   32篇
  2007年   24篇
  2006年   30篇
  2005年   27篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   17篇
  2000年   11篇
  1999年   15篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   6篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1973年   1篇
排序方式: 共有609条查询结果,搜索用时 15 毫秒
51.
52.
53.
Advances in biotechnology, gene manipulation, and protein engineering for macromolecule drugs, such as insulin, parathyroid hormone (PTH), calcitonin, human growth hormone, erythropoietin (EPO), and peptide YY (PYY) allow commercial production in large scale for diverse therapeutic uses. Other macromolecules, such as mucopolysaccharide heparin, have expanded markets through improvements in their pharmacokinetic and pharmacological effects. However, most products are available only as injectable forms and are limited to patients with no alternative therapeutic choices. Orally available macromolecule formulations are still unmet needs for improving patient compliance and expanding administration paradigms and indications. Oral delivery technologies including carrier systems, absorption enhancers, protease inhibitors, and modification by conjugating transporter or receptor recognition molecules have been developed and some are undergoing clinical studies. In this review, we discuss major obstacles for oral absorption of macromolecule drugs and summarize recent strategies to overcome the huddles related to enhancing intestinal permeation.  相似文献   
54.
55.
56.
Recently, we reported that sMEK1 is down-regulated in cancer cells and tissues, and that it enhances the pro-proliferative effect as a novel pro-apoptotic protein. However, the biological mechanism of the sMEK1 tumor suppressor in the cellular signal pathway has not been well understood. In our current work, we examined whether sMEK1 could promote the cytotoxic activity of gemcitabine in the human ovarian carcinoma system. Initially, we attempted to use a treatment of gemcitabine traditional chemotherapeutic agent and over-expression of sMEK1 in OVCAR-3 cancer cells. The combined treatment of sMEK1 and gemcitabine was more effective at inhibiting cell proliferation than either chemotherapeutic agent treatment alone. In addition, sMEK1 actively contributes to cell migration through its ability to promote gemcitabine-inhibited cell migration in tumorigenesis. Cell cycle-related proteins are highly associated with the down-regulation of cyclin D1 and CDK4, and the promotion of p16 and p27 as a cyclin-dependent kinase inhibitor. At the same time, sMEK1 arrests cell cycle progression in the G(1)-G(0) phase, and activates p53 and p21 expression, whereas Bcl-2 and Bcl-xL protein expression is reduced. Additionally, sMEK1 and gemcitabine suppresses the phosphorylation of signaling modulators downstream of PI3K, such as PDK1 and Akt. The p53 and p21 promoter luciferase activities were promoted by either sMEK1 or gemcitabine, and sMEK1 and gemcitabine combined additively activated the promoter further. Furthermore, as expected, sMEK1 plus gemcitabine markedly reduced the phosphorylation of p70S6K and the phosphorylation of 4E-BP1, which is one of the best characterized targets of the mTOR complex cascade. Taken together, these results provide evidence that sMEK1 can effectively regulate the pro-apoptotic activity of gemcitabine through the up-regulation of p53 expression.  相似文献   
57.
Glucagon-like peptide-1-(7-36) (GLP-1) is a hormone derived from the proglucagon molecule, which is considered a highly desirable antidiabetic agent mainly due to its unique glucose-dependent stimulation of insulin secretion profiles. However, the development of a GLP-1-based pharmaceutical agent has a severe limitation due to its very short half-life in plasma, being primarily degraded by dipeptidyl peptidase IV (DPP-IV) enzyme. To overcome this limitation, in this article we propose a novel and potent DPP-IV-resistant form of a poly(ethylene glycol)-conjugated GLP-1 preparation and its pharmacokinetic evaluation in rats. Two series of mono-PEGylated GLP-1, (i) N-terminally modified PEG(2k)-N(ter)-GLP-1 and (ii) isomers of Lys(26), Lys(34) modified PEG(2k)-Lys-GLP-1, were prepared by using mPEG-aldehyde and mPEG-succinimidyl propionate, respectively. To determine the optimized condition for PEGylation, the reactions were monitored at different pH buffer and time intervals by RP-HPLC and MALDI-TOF-MS. The in vitro insulinotropic effect of PEG(2k)-Lys-GLP-1 showed comparable biological activity with native GLP-1 (P = 0.11) in stimulating insulin secretion in isolated rat pancreatic islet and was significantly more potent than the PEG(2k)-N(ter)-GLP-1 (P < 0.05) that showed a marked reduced potency. Furthermore, PEG(2k)-Lys-GLP-1 was clearly resistant to purified DPP-IV in buffer with 50-fold increased half-life compared to unmodified GLP-1. When PEG(2k)-Lys-GLP-1 was administered intravenously and subcutaneously into rats, PEGylation improved the half-life, which resulted in substantial improvement of the mean plasma residence time as a 16-fold increase for iv and a 3.2-fold increase for sc. These preliminary results suggest a site specifically mono-PEGylated GLP-1 greatly improved the pharmacological profiles; thus, we anticipated that it could serve as potential candidate as an antidiabetic agent for the treatment of non-insulin-dependent diabetes patients.  相似文献   
58.
This study verified regional differences in the stem form of Pinus densiflora Sieb. et Zucc. (red pine) and identified the relationship between stem form and climatic factors in the central region of the Korean peninsula. Regional differences in stem form index at tree base (butt) and top stem section were found. Compared to the stem form in the eastern uplands, the stem form in the western lowlands could be characterized by a more conical butt section and more cylindrical middle and upper section. Through geostatistical analysis of kriging and spatial regression, several climatic factors proved to exert a meaningful influence on stem taper form. On the stem form at the butt section, the precipitation during the late growing season exerts statistically significant effects. High precipitation during the growing season in the western lowland and coastal region causes the stem form at the butt section to be more tapered. On the stem form at the middle and upper section, temperature and precipitation during the growing season, and wind during the late growing season have statistically meaningful influences. High temperature, precipitation, and wind during the growing season in the western lowland and coastal region jointly influence the stem form at the middle and upper sections which result in more cylindrical profiles. This study can be considered an initial investigation into the factors controlling stem form variability in the central region of the Korean peninsula. The results can be used to develop more accurate regional stem taper models needed for reasonable management of red pine stands in different regions.
Woo-Kyun LeeEmail: Phone: +82-2-32903016Fax: 82-2-9530737
  相似文献   
59.
Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.  相似文献   
60.
Glutamate carboxypeptidase II (GCPII) is an important target for therapeutic and diagnostic interventions aimed at prostate cancer and neurologic disorders. Here we describe the development and optimization of a high-throughput screening (HTS) assay based on fluorescence polarization (FP) that facilitates the identification of novel scaffolds inhibiting GCPII. First, we designed and synthesized a fluorescence probe based on a urea-based inhibitory scaffold covalently linked to a Bodipy TMR fluorophore (TMRGlu). Next, we established and optimized conditions suitable for HTS and evaluated the assay robustness by testing the influence of a variety of physicochemical parameters (e.g., pH, temperature, time) and additives. Using known GCPII inhibitors, the FP assay was shown to be comparable to benchmark assays established in the field. Finally, we evaluated the FP assay by HTS of a 20 000-compound library. The novel assay presented here is robust, highly reproducible (Z' = 0.82), inexpensive, and suitable for automation, thus providing an excellent platform for HTS of small-molecule libraries targeting GCPII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号