首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10140篇
  免费   779篇
  国内免费   4篇
  10923篇
  2023年   35篇
  2022年   130篇
  2021年   208篇
  2020年   126篇
  2019年   179篇
  2018年   287篇
  2017年   219篇
  2016年   359篇
  2015年   583篇
  2014年   661篇
  2013年   685篇
  2012年   922篇
  2011年   846篇
  2010年   556篇
  2009年   470篇
  2008年   645篇
  2007年   538篇
  2006年   484篇
  2005年   465篇
  2004年   403篇
  2003年   342篇
  2002年   297篇
  2001年   198篇
  2000年   186篇
  1999年   135篇
  1998年   66篇
  1997年   48篇
  1996年   30篇
  1995年   47篇
  1994年   40篇
  1993年   31篇
  1992年   57篇
  1991年   52篇
  1990年   62篇
  1989年   44篇
  1988年   35篇
  1987年   33篇
  1986年   30篇
  1985年   39篇
  1984年   27篇
  1983年   28篇
  1982年   20篇
  1981年   23篇
  1979年   22篇
  1975年   15篇
  1974年   18篇
  1973年   19篇
  1971年   23篇
  1970年   17篇
  1968年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The elucidation of factors that support human mesenchymal stem cells (hMSCs) growth has remained unresolved partly because of the reliance of many researchers on ill‐defined, proprietary medium formulation. Thus, we investigated the effects of high glucose (D ‐glucose, 25 mM) on hMSCs proliferation. High glucose significantly increased [3H]‐thymidine incorporation and cell‐cycle regulatory protein expression levels compared with 5 mM D ‐glucose or 25 mM L ‐glucose. In addition, high glucose increased transforming growth factor‐β1 (TGF‐β1) mRNA and protein expression levels. High glucose‐induced cell‐cycle regulatory protein expression levels and [3H]‐thymidine incorporation, which were inhibited by TGF‐β1 siRNA transfection and TGF‐β1 neutralizing antibody treatment. High glucose‐induced phosphorylation of protein kinase C (PKC), p44/42 mitogen‐activated protein kinases (MAPKs), p38 MAPK, Akt, and mammalian target of rapamycin (mTOR) in a time‐dependent manner. Pretreatment of PKC inhibitors (staurosporine, 10?6 M; bisindolylmaleimide I, 10?6 M), LY 294002 (PI3 kinase inhibitor, 10?6 M), Akt inhibitor (10?5 M), PD 98059 (p44/42 MAPKs inhibitor, 10?5 M), SB 203580 (p38 MAPK inhibitor, 10?6 M), and rapamycin (mTOR inhibitor, 10?8 M) blocked the high glucose‐induced cellular proliferation and TGF‐β1 protein expression. In conclusion, high glucose stimulated hMSCs proliferation through TGF‐β1 expression via Ca2+/PKC/MAPKs as well as PI3K/Akt/mTOR signal pathways. J. Cell. Physiol. 224:59–70, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   
992.
LGP2 is an important intracellular receptor that recognizes viral RNAs in innate immunity. To understand the mechanism of viral RNA recognition, we cloned an LGP2 cDNA and gene in Japanese flounder (Paralichthys olivaceus). Viral hemorrhagic septicemia virus-induced expressions of LGP2 mRNA were evaluated in vivo and in vitro by quantitative real-time PCR (Q-PCR) using primers based on the clone sequences. The expression of LGP2 mRNA in the kidney dramatically increased at 3 d postinfection. The expression of LGP2 mRNA also increased in the head kidney leukocytes stimulated with artificial dsRNA (polyinosin-polycytidylic acid) in vitro. To evaluate the antiviral activity of the flounder LGP2, three expression constructs containing pcDNA4-LGP2 (full-length), pcDNA4-LGP2ΔRD (regulatory domain deleted), and pcDNA4-Empty (as a negative control) were transfected into the hirame (flounder) natural embryo (hirame natural embryo) cell line. Forty-eight hours after transfection, the transfected cells were infected with ssRNA viruses, viral hemorrhagic septicemia virus, or hirame rhabdovirus. The cytopathic effects of the viruses were delayed by the overexpression of Japanese flounder LGP2. The Q-PCR demonstrated that mRNA expression levels of type I IFN and IFN-inducible genes (Mx and ISG15) in the hirame natural embryo cells overexpressing LGP2 were increased by polyinosin-polycytidylic acid and viral infections. These results suggest that Japanese flounder LGP2 plays an important role in the recognition of both viral ssRNA and dsRNA to induce the antiviral activity by the production of IFN-stimulated proteins.  相似文献   
993.
994.
The regulation of NFATc1 expression is important for osteoclast differentiation and function. Herein, we demonstrate that macrophage-colony-stimulating factor induces NFATc1 degradation via Cbl proteins in a Src kinase-dependent manner. NFATc1 proteins are ubiquitinated and rapidly degraded during late stage osteoclastogenesis, and this degradation is mediated by Cbl-b and c-Cbl ubiquitin ligases in a Src-dependent manner. In addition, NFATc1 interacts endogenously with c-Src, c-Cbl, and Cbl-b in osteoclasts. Overexpression of c-Src induces down-regulation of NFATc1, and depletion of Cbl proteins blocks NFATc1 degradation during late stage osteoclastogenesis. Taken together, our data provide a negative regulatory mechanism by which macrophage-colony-stimulating factor activates Src family kinases and Cbl proteins, and subsequently, induces NFATc1 degradation during osteoclast differentiation.  相似文献   
995.
Ha SH  Kim DH  Kim IS  Kim JH  Lee MN  Lee HJ  Kim JH  Jang SK  Suh PG  Ryu SH 《Cellular signalling》2006,18(12):2283-2291
Mammalian target-of-rapamycin (mTOR), which is a master controller of cell growth, senses a mitogenic signal in part through the lipid second messenger phosphatidic acid (PA), generated by phospholipase D (PLD). To understand further which isozymes of PLD are involved in this process, we compared the effect of PLD isozymes on mTOR activation. We found that PLD2 has an essential role in mitogen-induced mTOR activation as the siRNA-mediated knockdown of PLD2, not of PLD1, profoundly reduced the phosphorylations of S6K1 and 4EBP1, well-known mTOR effectors. Furthermore, exogenous PA-induced mTOR activation was abrogated by PLD2 knockdown, but not by PLD1 knockdown. This abrogation was found to be the result of complex formation between PLD2 and mTOR/raptor. PLD2 possesses a TOS-like motif (Phe-Glu-Val-Gln-Val, a.a. 265–269), through which it interacts with raptor independently of the other TOS motif-containing proteins, S6K1 and 4EBP1. PLD2-dependent mTOR activation appears to require PLD2 binding to mTOR/raptor with lipase activity, since lipase-inactive PLD2 cannot trigger mTOR activation despite its ability to interact with mTOR/raptor. Abrogation of mitogen-dependent mTOR activation by PLD2 knockdown was rescued only by wild type PLD2, but not by raptor binding-deficient and lipase-inactive PLD2. Our results demonstrate the importance of localized PA generation for the mitogen-induced activation of mTOR, which is achieved by a specific interaction between PLD2 and mTOR/raptor.  相似文献   
996.
We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway.  相似文献   
997.
998.
999.
Osteogenesis is a complex process associated with dramatic changes in gene expression. To elucidate whether modifications in chromatin structure are involved in osteoblast differentiation, we examined the expression levels of histone deacetylases (HDACs) and the degree of histone acetylation at the promoter regions of osteogenic genes. During osteogenesis, total HDAC enzymatic activity was decreased with significant reduction in HDAC1 expression. Consistently, recruitment of HDAC1 to the promoters of osteoblast marker genes, including osterix and osteocalcin, was down-regulated, whereas histone H3 and H4 were hyperacetylated at those promoters during osteoblast differentiation. Moreover, suppression of HDAC activity with a HDAC inhibitor, sodium butyrate, accelerated osteogenesis by inducing osteoblast marker genes including osteopontin and alkaline phosphatase. Consistently, knockdown of HDAC1 by the short interference RNA system stimulated osteoblast differentiation. Taken together, these data propose that down-regulation of HDAC1 is an important process for osteogenesis.  相似文献   
1000.
The production of free radicals and the resulting oxidative damage of cellular structures are always connected with the formation of oxidized proteins. The 20S proteasome is responsible for recognition and degradation of oxidatively damaged proteins. No detailed studies on the intracellular distribution of oxidized proteins during oxidative stress and on the distribution of the proteasome have been performed until now. Therefore, we used immunocytochemical methods to measure protein carbonyls, a form of protein oxidation products, and proteasome distribution within cells. Both immunocytochemical methods of measurement are semiquantitative and the load of oxidized proteins is increased after various oxidative stresses explored, with the highest increase in the perinuclear region of the cell. Distribution of the proteasome and the total protein content revealed the highest concentration of both in the nucleus. No redistribution of the proteasome during oxidative stress occurs. The normalized ratio of protein carbonyls to protein content was formed, indicating the highest concentration of oxidized proteins in the cytosolic region near the cell membrane. By forming the protein oxidation-to-proteasome ratio it was concluded that the highest load of oxidized proteins to the proteasome takes place in the cytosol, independent of the oxidant explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号