首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15217篇
  免费   1275篇
  国内免费   3篇
  2023年   35篇
  2022年   162篇
  2021年   292篇
  2020年   191篇
  2019年   264篇
  2018年   411篇
  2017年   339篇
  2016年   544篇
  2015年   826篇
  2014年   964篇
  2013年   1009篇
  2012年   1405篇
  2011年   1226篇
  2010年   831篇
  2009年   718篇
  2008年   977篇
  2007年   887篇
  2006年   805篇
  2005年   706篇
  2004年   652篇
  2003年   579篇
  2002年   442篇
  2001年   300篇
  2000年   276篇
  1999年   197篇
  1998年   110篇
  1997年   81篇
  1996年   54篇
  1995年   72篇
  1994年   65篇
  1993年   39篇
  1992年   93篇
  1991年   78篇
  1990年   93篇
  1989年   67篇
  1988年   68篇
  1987年   49篇
  1986年   49篇
  1985年   54篇
  1984年   42篇
  1983年   42篇
  1982年   32篇
  1981年   38篇
  1979年   31篇
  1978年   22篇
  1974年   23篇
  1973年   25篇
  1972年   22篇
  1971年   27篇
  1968年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
The synthesis and characterization of lipopeptides consisting of the lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-[R]-cysteine (Pam3Cys-OH) and different peptide segments and/or spacer molecules is described. Pam3Cys-peptides, which are derived from the immunologically active N-terminus of bacterial lipoprotein, were obtained either by solution or solid phase peptide synthesis. In particular, the amphiphilic and water-soluble lipohexapeptides Pam3Cys-Ser-(Lys)4 and Pam3Cys-Ser-(Glu)4 proved to be potent macrophage and B-cell activators and non-toxic, non-pyrogenic immune adjuvants in combination with or covalently linked to antigens and haptens.  相似文献   
52.
The effects on protein phosphorylation in mouse pancreatic acini of cyclic AMP-mediated secretagogues and the Ca2+-mediated agonist carbamylcholine were compared. Under the conditions adopted for the study of protein phosphorylation, carbamylcholine (3 microM) stimulated amylase release from pancreatic acini 6-fold, whereas vasoactive intestinal polypeptide (VIP) (100 nM) and the cyclic AMP analogue 8-bromo-cyclic AMP (1 mM) caused little or no increase in secretion. However, VIP and 8-bromo-cyclic AMP, when added in combination with carbamylcholine, potentiated the stimulation of amylase release to 170-180% of that caused by carbamylcholine alone. As assessed by two-dimensional gel electrophoresis, VIP reproduced four of the ten changes in protein phosphorylation elicited by carbamylcholine, these changes being the increased phosphorylation of one soluble protein and the decreased phosphorylation of three soluble proteins. VIP enhanced the carbamylcholine-induced changes in phosphorylation for three proteins. In addition, VIP increased the phosphorylation of a unique protein of Mr 52,000 and pI 5.66 which was not affected by carbamylcholine. All of the effects on protein phosphorylation exerted by VIP in the presence or absence of carbamylcholine were mimicked by 8-bromo-cyclic AMP. Secretin also reproduced most of the changes in protein phosphorylation caused by VIP, although concentrations of secretin of at least 100-fold higher were required to elicit a maximal response. It is concluded that cyclic AMP-mediated secretagogues alter the phosphorylation of a unique protein as well as of several pancreatic proteins affected by carbamylcholine. Moreover, these effects appear to be mediated primarily by VIP-preferring receptors and may be involved in the synergistic action of VIP to promote carbamylcholine-induced amylase release.  相似文献   
53.
Cyanase is an inducible enzyme in Escherichia coli that catalyzes the reaction of cyanate with bicarbonate resulting in the decomposition of cyanate to ammonia and bicarbonate. In this study, the role of the single sulfhydryl group in each of the eight identical subunits of cyanase was investigated. Tetranitromethane, methyl methanethiosulfonate, N-ethylmaleimide, and Hg2+ all reacted with the sulfhydryl group to give derivatives which had reduced activities and which dissociated reversibly to inactive dimer. Association of inactive dimer to active octamer was facilitated by the presence of azide (cyanate analog) and bicarbonate, increased temperature and enzyme concentration, and presence of phosphate. Nitration of tyrosine residues by tetranitromethane occurred only in the absence of azide and bicarbonate, suggesting that at least some of the tyrosine residues become exposed when octamer dissociates to dimer. Site-directed mutagenesis was used to prepare a mutant enzyme in which serine was substituted for cysteine. The mutant enzyme was catalytically active and had properties very similar to native enzyme, except that it was less stable to treatment with urea and to high temperatures. These results establish that in native cyanase the sulfhydryl group per se is not required for catalytic activity, but it may play a role in stabilizing octameric structure, and that octameric structure is required for catalytic activity.  相似文献   
54.
Chemical and functional purity of the human erythrocyte glucose transporter preparation obtained by DEAE column chromatography after octyl glucoside solubilization was assessed. The cytochalasin B binding capacity of the preparation indicates that the preparation is 60-85% functional glucose transporter. Gel filtration chromatography on TSK 250 column separates this preparation into at least three major peptide fractions, namely, P0, P1 and P2, with apparent Mr of approx. 80 000, 43 000 and 17 000, respectively. When the preparation is photolabelled with [3H]cytochalasin B prior to the separation only P0 and P1 are labelled. Exposure of the preparation to octyl glucoside or to ultraviolet light irradiation results in an increase in P0 in a time-dependent manner with a concomitant and proportional reduction in P1, without affecting P2 appreciably. For individual preparations, relative abundance of P0 and P1 vary widely in a reciprocal fashion, while that of P2 is practically fixed at approx. 10% of the total protein. The specific activity of cytochalasin B binding of each preparation correlates linearly with the relative abundance of P1 of the preparation, which gives a calculated specific binding activity of 22 nmol/mg protein for this fraction. These results indicate that P1 and P0 are native and denatured transporter, respectively, while P2 is contaminating protein impurities. These results demonstrate that the glucose transporter preparation contains approx. 10% of nontransporter protein impurities, with a varying amount (up to 30%) of denatured transporter, and that the transporter free of the chemical impurities and the denatured transporter can be obtained by a gel filtration chromatography of this preparation.  相似文献   
55.
The normal, discoid shape of red blood cells represents an equilibrium between two opposing factors, i.e., stomatocytic and echinocytic transformations. Most stomatocytic agents were found to be inhibitors of calmodulin, a regulator of the phosphorylation of membrane proteins. We determined whether red cell shape transformations could be caused by changes in phosphorylation of membrane proteins, specifically the cAMP-dependent phosphorylation of ankyrin and band 4.1. Red blood cells were incubated with 32P and 100 microM chlorpromazine (stomatocytic transformation) or 30 mM sodium salicylate (echinocytic transformation) for various time intervals. Ghost membrane proteins were examined by polyacrylamide gel electrophoresis and autoradiography. Spectrin (beta-chain), ankyrin, band 3, band 4.1 and 4.9 were phosphorylated. No change was found in the degree and pattern of phosphorylation after stomatocytic transformation. Salicylate caused a reversible inhibition of transmembranous phosphate transport in both directions. The results indicate that the stomatocytic transformation induced by chlorpromazine and the echinocytic transformation induced by salicylate do not involve a change in phosphorylation, but that the echinocytic transformation induced by salicylate is associated with an inhibition of transmembranous transport of phosphate. Studies with salicylate suggest that the phosphorylation sites of band 3 are found mainly on the endofacial side of the membrane.  相似文献   
56.
S Gibson  C Y Jung  M Takahashi  J Lenard 《Biochemistry》1986,25(20):6264-6268
The size of the functional units responsible for several activities carried out by the influenza virus envelope glycoproteins was determined by radiation inactivation analysis. Neuraminidase activity, which resides in the glycoprotein NA, was inactivated exponentially with an increasing radiation dose, yielding a target size of 94 +/- 5 kilodaltons (kDa), in reasonable agreement with that of the disulfide-bonded dimer (120 kDa). All the other activities studied are properties of the HA glycoprotein and were normalized to the known molecular weight of the neuraminidase dimer. Virus-induced fusion activity was measured by two phospholipid dilution assays: relief of energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)dipalmitoyl-L-alpha- phosphatidylethanolamine (N-NBD-PE) and N-(lissamine rhodamine B sulfonyl)-dioleoyl-L-alpha-phosphatidylethanolamine (N-Rh-PE) in target liposomes and relief of self-quenching of N-Rh-PE in target liposomes. Radiation inactivation of fusion activity proceeded exponentially with radiation dose, yielding normalized target sizes of 68 +/- 6 kDa by assay i and 70 +/- 4 kDa by assay ii. These values are close to the molecular weight of a single disulfide-bonded (HA1 + HA2) unit (75 kDa), the "monomer" of the HA trimer. A single monomer is thus inactivated by each radiation event, and each monomer (or some part of it) constitutes a minimal functional unit capable of mediating fusion. Virus-induced leakage of calcein from target liposomes and virus-induced leakage of hemoglobin from erythrocytes (hemolysis) both showed more complex inactivation behavior: a pronounced shoulder was present in both inactivation curves, followed by a steep drop in activity at higher radiation levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
57.
Summary The voltage-dependence of channel formation by alamethicin and its natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts -helical conformation in hydrophobic medium. It was, therefore, supposed that the only structural requirement for voltage-dependent formation of alamethicin-type channels might be a rigid lipophilic helical segment of minimum length.In order to test this hypothesis we synthesized a family of lipophilic polypeptides—Boc-(Ala-Aib-Ala-Aib-Ala) n -OMe,n=1–4—which adopt -helical conformation forn=2–4 and studied their interaction with planar lipid bilayers. Surprisingly, despite their large difference in chain length, all four polypeptides showed qualitatively similar behavior. At low field strength of the membrane electric field these polypeptides induce a significant, almost voltage-independent increase of the bilayer conductivity. At high field strength, however, a strongly voltage-dependent conductance increase occurs similar to that observed with alamethicin. It results from the opening of a multitude of ion translocating channels within the membrane phase.The steady-state voltage-dependent conductance depends on the 8th–9th power of polypeptide concentration and involves the transfer of 4–5 formal elementary charges. From the power dependences on polypeptide concentration and applied voltage of the time constants in voltage-jump current-relaxation experiments, it is concluded that channels could be formed from preexisting dodecamer aggregates by the simultaneous reorientation of six formal elementary charges. Channels exhibit large conductance values of several nS, which become larger towards shorter polypeptide chain length. A mean channel diameter of 19 Å is estimated corresponding roughly to the lumen diameter of a barrel comprised of 10 -helical staves. Similar to experiments with the N-terminal Boc-derivative of alamethicin we did not observe the burst sequence of nonintegral conductance steps typical of natural (N-terminal Ac-Aib)-alamethicin. Saturation in current/voltage curves as well as current inactivation in voltage-jump current-relaxation experiments are found. This may be understood by assuming that channels are generated as dodecamers but, while reaching the steady state, reduce their size to that of an octamer or nonamer. We conclude that the overall behavior of these synthetic polypeptides is very similar to that of alamethicin. They exhibit the same concentration and voltage-dependences but lack the stabilizing principle of resolved channel states characteristic of alamethicin.  相似文献   
58.
A combination of autoradiography and air-dried techniques was used to calculate the duration of the major meiotic stages in the first wave of spermatogenesis in the newborn mouse. The data indicated that the entry into meiosis occurred asynchronously over 2 days, and the time required for each stage and the total cycle was constant. These time intervals were nearly identical with those estimated for adult animals in the present study and by other authors.  相似文献   
59.
DNA clones representing two subfamilies A and B of legum in genes and a recombinant phage containing a complete legumin B gene have been isolated and characterized by DNA sequencing. A DNA fragment harbouring the legumin B gene and adjacent sequences was used for Ti-mediated transfer into tobacco cells.  相似文献   
60.
2-Deoxy-D-glucose inhibits Fc and complement receptor-mediated phagocytosis of mouse peritoneal macrophages. To understand the mechanism of this inhibition, we analyzed the 2-deoxy-D-glucose metabolites in macrophages under phagocytosis inhibition conditions and conditions of phagocytosis reversal caused by glucose, mannose and 5-thio-D-glucose, and compared their accumulations under these conditions. Macrophages metabolized 2-deoxy-D-glucose to form 2-deoxy-D-glucose 6-phosphate, 2-deoxy-D-glucose 1-phosphate, UDP-2-deoxy-D-glucose, 2-deoxy-D-glucose 1, 6-diphosphate, 2-deoxy-D-gluconic acid and 2-deoxy-6-phospho-D-gluconic acid. The level of bulk accumulation as well as the accumulation of any of these 2-deoxy-D-glucose metabolites did not correlate with changes in macrophage phagocytosis capacities caused by the reversing sugars. 2-Deoxy-D-glucose inhibited glycosylation of thioglycolate-elicited macrophage by 70-80%. This inhibition did not cause phagocytosis inhibition, since (1) the reversal of phagocytosis by 5-thio-D-glucose was not followed by increases in the incorporation of radiolabelled galactose, glucosamine, N-acetylgalactosamine or fucose; (2) cycloheximide at a concentration that inhibited glycosylation by 70-80% did not affect macrophage phagocytosis. The inhibition of protein synthesis by 2-deoxy-D-glucose similarly could not account for phagocytosis inhibition, since cycloheximide, when used at a concentration that inhibited protein synthesis by 95%, did not affect phagocytosis. 2-Deoxy-D-glucose lowered cellular nucleoside triphosphates by 70-99%, but their intracellular levels in the presence of different reversing sugars did not correlate with the magnitude of phagocytosis reversal caused by these sugars. The results show that 2-deoxy-D-glucose inhibits phagocytosis by a mechanism distinct from its usual action of inhibiting glycosylation, protein synthesis and depleting energy supplies, mechanisms by which 2-deoxy-D-glucose inhibits other cellular processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号