首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28699篇
  免费   2151篇
  国内免费   1216篇
  2024年   37篇
  2023年   253篇
  2022年   571篇
  2021年   1116篇
  2020年   677篇
  2019年   976篇
  2018年   1078篇
  2017年   786篇
  2016年   1181篇
  2015年   1679篇
  2014年   1993篇
  2013年   2123篇
  2012年   2578篇
  2011年   2339篇
  2010年   1508篇
  2009年   1385篇
  2008年   1662篇
  2007年   1491篇
  2006年   1268篇
  2005年   1124篇
  2004年   919篇
  2003年   859篇
  2002年   730篇
  2001年   529篇
  2000年   482篇
  1999年   422篇
  1998年   229篇
  1997年   204篇
  1996年   184篇
  1995年   163篇
  1994年   124篇
  1993年   101篇
  1992年   169篇
  1991年   133篇
  1990年   130篇
  1989年   94篇
  1988年   78篇
  1987年   76篇
  1986年   68篇
  1985年   90篇
  1984年   35篇
  1983年   44篇
  1982年   30篇
  1981年   34篇
  1979年   28篇
  1975年   20篇
  1974年   25篇
  1973年   25篇
  1971年   28篇
  1968年   24篇
排序方式: 共有10000条查询结果,搜索用时 295 毫秒
991.
In order to reveal the character of ammonia emission in senescent tobacco (Nicotiana tabacum), the content of NH4+, total nitrogen, and soluble protein, and the activities of nitrogen metabolism-related enzymes were measured in leaves of a quick-leaf-senescence phenotype ZY90 and a slow-leaf-senescence phenotype NC89. Compared with NC89, ZY90 had a higher NH4+ accumulation, a lower glutamine synthetase activity, and a significantly higher stomatal ammonia compensation point, and ammonia emission during 40 to 60 d after leaf emergence. During senescence, the quick-leafsenescence phenotype was characterized by nitrogen re-transfer by ammonia emmission, whereas the slow-leafsenescence phenotype by nitrogen re-assimilation. The ammonia emission was primarily regulated by glutamine synthetase activity, apoplastic pH, and NH4+ content.  相似文献   
992.
Iron is required for the Fe-S cluster assembly which occurs in chloroplasts, mitochondria, and cytosol and here we characterized 44 Fe-S cluster biosynthesis genes and investigated their expression profiles during different peach flowering stages. Quantitative real-time PCR analysis shows that the highest expression of most peach Fe-S cluster biosynthesis genes appeared in the full bloom stage. Also, the highest Fe accumulation occurred in the full bloom stage followed by beginning bloom, petal fall, and bud swell stages. Activities of nitrite reductase (NiR) and succinate dehydrogenase (SDH) were closely correlated to the flower Fe content, whereas the aconitase (ACO) activity kept steady during the whole flowering process. Moreover, shading treatment significantly reduced Fe accumulation and NiR, SDH, and ACO activities of the full blooming flowers. Seventeen Fe-S cluster biosynthesis genes were down-regulated in response to a shading treatment. In particular, plastid sulfur mobilization genes were sensitive to the shading treatment.  相似文献   
993.
994.
995.
996.
997.

Main conclusion

Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.
  相似文献   
998.
999.
1000.
The process of evaporation results in the fractionation of water isotopes such that the lighter 16O isotope preferentially escapes the gas phase leaving the heavier 18O isotope to accumulate at the sites of evaporation. This applies to transpiration from a leaf with the degree of fractionation dependent on a number of environmental and physiological factors that are well understood. Nevertheless, the 18O enrichment of bulk leaf water is often less than that predicted for the sites of evaporation. The advection of less enriched water in the transpiration stream has been suggested to limit the back diffusion of enriched evaporative site water (Péclet effect); however, evidence for this effect has been varied. In sampling across a range of species with different vein densities and saturated water contents, we demonstrate the importance of accounting for the relative ‘pool’ sizes of the vascular and mesophyll water for the interpretation of a Péclet effect. Further, we provide strong evidence for a Péclet signal within the xylem that if unaccounted for can lead to confounding of the estimated enrichment within the mesophyll water. This has important implications for understanding variation in the effective path length of the mesophyll and hence potentially the δ18O of organic matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号