首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28699篇
  免费   2151篇
  国内免费   1216篇
  2024年   37篇
  2023年   253篇
  2022年   571篇
  2021年   1116篇
  2020年   677篇
  2019年   976篇
  2018年   1078篇
  2017年   786篇
  2016年   1181篇
  2015年   1679篇
  2014年   1993篇
  2013年   2123篇
  2012年   2578篇
  2011年   2339篇
  2010年   1508篇
  2009年   1385篇
  2008年   1662篇
  2007年   1491篇
  2006年   1268篇
  2005年   1124篇
  2004年   919篇
  2003年   859篇
  2002年   730篇
  2001年   529篇
  2000年   482篇
  1999年   422篇
  1998年   229篇
  1997年   204篇
  1996年   184篇
  1995年   163篇
  1994年   124篇
  1993年   101篇
  1992年   169篇
  1991年   133篇
  1990年   130篇
  1989年   94篇
  1988年   78篇
  1987年   76篇
  1986年   68篇
  1985年   90篇
  1984年   35篇
  1983年   44篇
  1982年   30篇
  1981年   34篇
  1979年   28篇
  1975年   20篇
  1974年   25篇
  1973年   25篇
  1971年   28篇
  1968年   24篇
排序方式: 共有10000条查询结果,搜索用时 297 毫秒
961.

Background

Sex- and gender-based medicine (SGBM) aims to (1) delineate and investigate sex- and gender-based differences in health, disease, and response to treatment and (2) apply that knowledge to clinical care to improve the health of both women and men. However, the integration of SGBM into medical school curricula is often haphazard and poorly defined; schools often do not know the current status of SGBM content in their curricula, even if they are committed to addressing gaps and improving SGBM delivery. Therefore, complete auditing and accounting of SGBM content in the existing medical school curriculum is necessary to determine the baseline status and prepare for successful integration of SGBM content into that curriculum.

Methods

A review of course syllabi and lecture objectives as well as a targeted data analysis of the Curriculum Management and Information Tool (CurrMIT) were completed prior to a real-time curriculum audit. Subsequently, six “student scholars,” three first-year and three second-year medical students, were recruited and trained to audit the first 2 years of the medical school curriculum for SGBM content, thus completing an audit for both of the pre-clinical years simultaneously. A qualitative analysis and a post-audit comparative analysis were completed to assess the level of SGBM instruction at our institution.

Results

The review of syllabi and the CurrMIT data analysis did not generate a meaningful catalogue of SGBM content in the curriculum; most of the content identified specifically targeted women’s or men’s health topics and not sex- or gender-based differences. The real-time student audit of the existing curriculum at Texas Tech revealed that most of the SGBM material was focused on the physiological/anatomical sex differences or gender differences in disease prevalence, with minimal coverage of sex- or gender-based differences in diagnosis, prognosis, treatment, and outcomes.

Conclusions

The real-time student scholar audit was effective in identifying SGBM content in the existing medical school curriculum that was not possible with a retrospective review of course syllabi and lecture objectives or curriculum databases such as the CurrMIT. The audit results revealed the need for improved efforts to teach SGBM topics in our school’s pre-clinical curriculum.
  相似文献   
962.
Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation.Stem cells in the body are exposed to low oxygen pressure owing to the physiological distribution of vessels.1 This hypoxic niche for stem cells is essential to maintain the metabolic characteristics of stem cells.2 Thus, describing the oxygen nature of this stem cell niche is important for elucidating stem cell regulation. Oxygen signaling is a major determinant of cell fate-controlling cellular processes. Control of oxygen signaling in stem cells has the potential to regulate embryonic development, cell cultivation, cell reprogramming, and transplantation in regenerative medicine.1, 3, 4, 5, 6 There are many reports showing the effects of hypoxia on various kinds of stem cells, and it has been shown that hypoxia has a paradoxical role in stem cell behaviors and cell fate regulation related to stem cell type, ageing, and oxygen concentration.3, 7, 8, 9 Studies of mechanisms by which stem cells function under hypoxia, and how they are regulated, have been undertaken. Several investigators recently reported that hypoxia-mediated stem cell metabolic alteration is associated with stem cell function; as a result, interest in the interaction between hypoxia and stem cell metabolism is growing.10, 11 However, which metabolic factors are important for stem cell fate under hypoxia have not been elucidated.O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) is affected by cellular nutrient status and extra-cellular stresses including hypoxia.12, 13, 14 A hypoxia-induced glycolytic switch primarily stimulates hexosamine biosynthetic pathway (HBP) flux, which induces O-GlcNAcylation signaling.15 O-GlcNAcylation is catalyzed by O-linked N-acetyl glucosamine transferase (OGT) to add N-acetyl glucosamine to the serine or threonine residues of proteins.16, 17, 18 O-GlcNAcylation acts as an essential factor for controlling physiological processes including migration, proliferation, and survival in stem cells, and recently it was considered as a potential strategy for use in stem cell therapy.19, 20, 21 In addition, as many human metabolic diseases such as diabetes and cancer are attributed to aberrant O-GlcNAcylation, unraveling HBP-mediated O-GlcNAc signaling is important in the development of practical strategies for metabolic diseases treatment. For example, Liu et al.22 showed that glucosamine-mediated O-GlcNAcylation induced resistance to tissue damage resulting from ischemic injury and provided cardio-protection in an animal model. Furthermore, O-GlcNAcylation interacts with other nutrient metabolic pathways such as lipogenesis, gluconeogenesis, and glycogen synthesis.12, 23, 24 Among these metabolic pathways, lipid metabolism is reported to have a central role in controlling stem cell fate.25, 26 Collectively, these results suggest that O-GlcNAcylation can be a useful tool for use in cellular metabolic regulation, and identification of an O-GlcNAcylation-regulating potential lipid metabolic factor, which is important for stem cell regulation, may suggest potentially useful metabolic approach in stem cell therapy.Embryonic stem cells (ESCs) are distinctive in that they have a self-renewal capacity, exhibit pluripotency to enable differentiation into cellular derivatives of three lineages, and may be used as a representative in vitro model in the study of early embryo development, pluripotent stem cell physiology, and clinical applications.27, 28, 29 Despite the clinical limitation associated with ESCs and the possibility of cancer formation, several studies into the therapeutic effects of ESCs in regenerative medicine have been reported. Indeed, administrations of human or mouse ESCs (mESCs) has induced a paracrine effect and improved damaged cell functions.30, 31, 32 However, despite the benefit of ESCs in regenerative medicine, ESC apoptosis remains an impediment to ESC applications using hypoxia.33, 34, 35 Thus, researchers are investigating ways to minimize ESC apoptosis and control ESC fate under hypoxia. In this study, we used glucosamine to induce O-GlcNAcylation. Therefore, our study investigated the role of O-GlcNAcylation via glucosamine (GlcN) which is recognized as a HBP activator36 in lipid metabolism and in protection of mESC apoptosis under hypoxia.  相似文献   
963.
964.
The functional region of interest (fROI) approach has increasingly become a favored methodology in functional magnetic resonance imaging (fMRI) because it can circumvent inter-subject anatomical and functional variability, and thus increase the sensitivity and functional resolution of fMRI analyses. The standard fROI method requires human experts to meticulously examine and identify subject-specific fROIs within activation clusters. This process is time-consuming and heavily dependent on experts’ knowledge. Several algorithmic approaches have been proposed for identifying subject-specific fROIs; however, these approaches cannot easily incorporate prior knowledge of inter-subject variability. In the present study, we improved the multi-atlas labeling approach for defining subject-specific fROIs. In particular, we used a classifier-based atlas-encoding scheme and an atlas selection procedure to account for the large spatial variability across subjects. Using a functional atlas database for face recognition, we showed that with these two features, our approach efficiently circumvented inter-subject anatomical and functional variability and thus improved labeling accuracy. Moreover, in comparison with a single-atlas approach, our multi-atlas labeling approach showed better performance in identifying subject-specific fROIs.  相似文献   
965.

Background

With evaluation for physical performance, measuring muscle mass is an important step in detecting sarcopenia. However, there are no methods to estimate muscle mass from blood sampling.

Methods

To develop a new equation to estimate total-body muscle mass with serum creatinine and cystatin C level, we designed a cross-sectional study with separate derivation and validation cohorts. Total body muscle mass and fat mass were measured using dual-energy x-ray absorptiometry (DXA) in 214 adults aged 25 to 84 years who underwent physical checkups from 2010 to 2013 in a single tertiary hospital. Serum creatinine and cystatin C levels were also examined.

Results

Serum creatinine was correlated with muscle mass (P < .001), and serum cystatin C was correlated with body fat mass (P < .001) after adjusting glomerular filtration rate (GFR). After eliminating GFR, an equation to estimate total-body muscle mass was generated and coefficients were calculated in the derivation cohort. There was an agreement between muscle mass calculated by the novel equation and measured by DXA in both the derivation and validation cohort (P < .001, adjusted R2 = 0.829, β = 0.95, P < .001, adjusted R2 = 0.856, β = 1.03, respectively).

Conclusion

The new equation based on serum creatinine and cystatin C levels can be used to estimate total-body muscle mass.  相似文献   
966.

Objective

The aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population.

Research Design and Methods

The sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system.

Results

Ultimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype.

Conclusions

TPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms.  相似文献   
967.

Background and Purpose

Short-term combined use of clopidogrel and aspirin improves cerebrovascular outcomes in patients with symptomatic extracranial or intracranial stenosis. Antiplatelet non-responsiveness is related to recurrent ischemic events, but the culprit genetic variants responsible for the non-responsiveness have not been well studied. We aimed to identify the genetic variants associated with poor clinical outcomes.

Methods

Patients with symptomatic extracranial or intracranial stenosis scheduled for stenting and receiving dual antiplatelets (clopidogrel 75 mg and aspirin 100 mg daily) for at least 5 days before intervention were enrolled. Ischemic events including recurrent transient ischemic attack, stroke, myocardial infarction, and vascular-related mortality within 12 months follow-up were recorded. We examined the influence of genetic polymorphisms on treatment outcome in our patients.

Results

A total of 268 patients were enrolled into our study and ischemic events were observed in 39 patients. For rs662 of paraoxonase 1 (PON1), allele C was associated with an increased risk of ischemic events (OR = 1.64, 95%CI = 1.03–2.62, P = 0.029). The A-allele carriers of rs2046934 of P2Y12 had a significant association with adverse events (OR = 2.01, 95%CI = 1.10–3.67, P = 0.041). The variant T-allele of cyclooxygenase-1 (COX1) rs1330344 significantly increased the risk of recurrent clinical events (OR = 1.85, 95%CI = 1.12–3.03, P = 0.017). The other single nucleotide polymorphism (SNP) had no association with ischemic events.

Conclusions

PON1, P2Y12 and COX1 polymorphisms were associated with poorer vascular outcomes. Testing for these polymorphisms may be valuable in the identification of patients at risk for recurrent ischemic events.  相似文献   
968.
CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5’-AAG-3’ was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis.  相似文献   
969.
HIV incidence estimates are used to monitor HIV-1 infection in the United States. Use of laboratory biomarkers that distinguish recent from longstanding infection to quantify HIV incidence rely on having accurate knowledge of the average time that individuals spend in a transient state of recent infection between seroconversion and reaching a specified biomarker cutoff value. This paper describes five estimation procedures from two general statistical approaches, a survival time approach and an approach that fits binomial models of the probability of being classified as recently infected, as a function of time since seroconversion. We compare these procedures for estimating the mean duration of recent infection (MDRI) for two biomarkers used by the U.S. National HIV Surveillance System for determination of HIV incidence, the Aware BED EIA HIV-1 incidence test (BED) and the avidity-based, modified Bio-Rad HIV-1/HIV-2 plus O ELISA (BRAI) assay. Collectively, 953 specimens from 220 HIV-1 subtype B seroconverters, taken from 5 cohorts, were tested with a biomarker assay. Estimates of MDRI using the non-parametric survival approach were 198.4 days (SD 13.0) for BED and 239.6 days (SD 13.9) for BRAI using cutoff values of 0.8 normalized optical density and 30%, respectively. The probability of remaining in the recent state as a function of time since seroconversion, based upon this revised statistical approach, can be applied in the calculation of annual incidence in the United States.  相似文献   
970.

Objectives

In the present study, we aimed to determine the effect of both active and passive smoking on the prevalence of the hearing impairment and the hearing thresholds in different age groups through the analysis of data collected from the Korea National Health and Nutrition Examination Survey (KNHANES).

Study Design

Cross-sectional epidemiological study.

Methods

The KNHANES is an ongoing population study that started in 1998. We included a total of 12,935 participants aged ≥19 years in the KNHANES, from 2010 to 2012, in the present study. Pure-tone audiometric (PTA) testing was conducted and the frequencies tested were 0.5, 1, 2, 3, 4, and 6 kHz. Smoking status was categorized into three groups; current smoking group, passive smoking group and non-smoking group.

Results

In the current smoking group, the prevalence of speech-frequency bilateral hearing impairment was increased in ages of 40−69, and the rate of high frequency bilateral hearing impairment was elevated in ages of 30−79. When we investigated the impact of smoking on hearing thresholds, we found that the current smoking group had significantly increased hearing thresholds compared to the passive smoking group and non-smoking groups, across all ages in both speech-relevant and high frequencies. The passive smoking group did not have an elevated prevalence of either speech-frequency bilateral hearing impairment or high frequency bilateral hearing impairment, except in ages of 40s. However, the passive smoking group had higher hearing thresholds than the non-smoking group in the 30s and 40s age groups.

Conclusion

Current smoking was associated with hearing impairment in both speech-relevant frequency and high frequency across all ages. However, except in the ages of 40s, passive smoking was not related to hearing impairment in either speech-relevant or high frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号