首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2685篇
  免费   249篇
  国内免费   287篇
  2024年   10篇
  2023年   52篇
  2022年   110篇
  2021年   188篇
  2020年   133篇
  2019年   140篇
  2018年   140篇
  2017年   112篇
  2016年   159篇
  2015年   211篇
  2014年   249篇
  2013年   227篇
  2012年   244篇
  2011年   231篇
  2010年   115篇
  2009年   130篇
  2008年   147篇
  2007年   126篇
  2006年   95篇
  2005年   96篇
  2004年   75篇
  2003年   41篇
  2002年   38篇
  2001年   13篇
  2000年   13篇
  1999年   17篇
  1998年   10篇
  1997年   13篇
  1996年   10篇
  1995年   16篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   1篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有3221条查询结果,搜索用时 468 毫秒
131.
132.
Root explants excised from carnation plants maintained in vitro formed off-white, friable calluses after three weeks of culture on Murashige and Skoog (MS) medium supplemented with 1 mg l−1 thidiazuron (TDZ) and 1 mg l−1 α-naphthalaneacetic acid (NAA). These calluses were subsequently transferred to MS basal medium where, after an additional four weeks of culture, approximately 50% of the calluses formed somatic embryos. However, calluses formed on root explants that had been cultured on MS medium supplemented with 2,4-dichlorophenoxyacetic acid did not produce somatic embryos upon transfer to MS basal medium. Somatic embryos developed into plantlets and subsequently were grown to maturity. These results indicate that root explants have a high competence for somatic embryogenesis in carnation. J. Seo and S.W. Kim contributed equally to this work.  相似文献   
133.
134.
135.
136.
Heat shock protein 27 (Hsp27)/protein 53 (P53) plays an important role in testis development and spermatozoa regulation, but the relationship between Hsp27/P53 and infertility in cattle is unclear. Here, we focus on male cattle-yak and yak to investigate the expression and localization of Hsp27/P53 in testis tissues and to explore the influence of Hsp27/P53 on infertility. In our study, a total of 54 cattle (24 cattle-yak and 30 yak) were examined. The Hsp27 and P53 messenger RNA (mRNA) of cattle-yak were cloned, and amino acid variations in Hsp27 and P53 were found; the variations led to differences in the protein spatial structure compared with yak. We used real-time quantitative polymerase chain reaction and western blot to investigate whether the expression of Hsp27/P53 mRNA and protein was different in cattle-yak and yak. We found that the expression levels of Hsp27/P53 mRNA and protein were different in the testis developmental stages and the highest expression was observed in testicles during adulthood. Moreover, the Hsp27 expression was significantly higher in yak, whereas P53 expression was higher in cattle-yak (p < 0.01). On this basis, we detected the location of Hsp27/P53 in the testis by immunohistochemistry and immunofluorescence. The results demonstrated that Hsp27 was located in spermatogenic cells at different developmental stages and mesenchymal cells of the yak testicles. However, P53 was located in the primary spermatocyte and interstitial cells of the cattle-yak testicles. In summary, our study proved that the expression of Hsp27/P53 differed across the testis developmental stages and the expression of P53 was higher in the testis of cattle-yak, which suggested that the infertility of cattle-yak may be caused by the upregulation of P53.  相似文献   
137.
Hu  Huizhen  Zhang  Ran  Tang  Yiwei  Peng  Chenglang  Wu  Leiming  Feng  Shengqiu  Chen  Peng  Wang  Yanting  Du  Xuezhu  Peng  Liangcai 《Plant molecular biology》2019,101(4-5):389-401
Key message

Overexpression of cotton cellulose synthase like D3 (GhCSLD3) gene partially rescued growth defect of atcesa6 mutant with restored cell elongation and cell wall integrity mainly by enhancing primary cellulose production.

Abstract

Among cellulose synthase like (CSL) family proteins, CSLDs share the highest sequence similarity to cellulose synthase (CESA) proteins. Although CSLD proteins have been implicated to participate in the synthesis of carbohydrate-based polymers (cellulose, pectins and hemicelluloses), and therefore plant cell wall formation, the exact biochemical function of CSLD proteins remains controversial and the function of the remaining CSLD genes in other species have not been determined. In this study, we attempted to illustrate the function of CSLD proteins by overexpressing Arabidopsis AtCSLD2, -3, -5 and cotton GhCSLD3 genes in the atcesa6 mutant, which has a background that is defective for primary cell wall cellulose synthesis in Arabidopsis. We found that GhCSLD3 overexpression partially rescued the growth defect of the atcesa6 mutant during early vegetative growth. Despite the atceas6 mutant having significantly reduced cellulose contents, the defected cell walls and lower dry mass, GhCSLD3 overexpression largely restored cell wall integrity (CWI) and improved the biomass yield. Our result suggests that overexpression of the GhCSLD protein enhances primary cell wall synthesis and compensates for the loss of CESAs, which is required for cellulose production, therefore rescuing defects in cell elongation and CWI.

  相似文献   
138.
Gastric cancer (GC) is a prevalent malignant cancer of digestive system, identification of novel diagnostic and prognostic biomarkers for GC is urgently demanded. The aim of this study was to determine potential long noncoding RNAs (lncRNAs) associated with the pathogenesis and prognosis of GC. Raw noncoding RNA microarray data (GSE53137, GSE70880, and GSE99417) was downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes between GC and adjacent normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile after gene reannotation and batch normalization. Differentially expressed genes were further confirmed by The Cancer Genome Atlas (TCGA) database. Competing endogenous RNA (ceRNA) network, Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway, survival analysis were extensively applied to identify hub lncRNAs and discover potential biomarkers related to diagnosis and prognosis of GC. In total of 246 integrated differential genes including 15 lncRNAs and 241 messenger RNAs (mRNAs) were obtained after intersections of differential genes between GEO and TCGA database. ceRNA network comprised of three lncRNAs (UCA1, HOTTIP, and HMGA1P4), 26 microRNAs (miRNAs) and 72 mRNAs. Functional analysis revealed that three lncRNAs were mainly dominated in cell cycle and cellular senescence. Survival analysis showed that HMGA1P4 was statistically related to the overall survival rate. For the first time, we identified that HMGA1P4, a target of miR-301b/miR-508, is involved in cell cycle and senescence process by regulating CCNA2 in GC. Finally, the expression levels of three lncRNAs were validated to be upregulated in GC tissues. Thus, three lncRNAs including UCA1, HOTTIP, and HMGA1P4 may contribute to GC development and their potential functions might be associated with the prognosis of GC.  相似文献   
139.
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.  相似文献   
140.
Adenylate kinase is a monomeric phosphotransferase with important biological function in regulating concentration of adenosine triphosphate (ATP) in cells, by transferring the terminal phosphate group from ATP to adenosine monophosphate (AMP) and forming two adenosine diphosphate (ADP) molecules. During this reaction, the kinase may undergo a large conformational transition, forming different states with its substrates. Although many structures of the protein are available, atomic details of the whole process remain unclear. In this article, we use both conventional molecular dynamics (MD) simulation and an enhanced sampling technique called parallel cascade selection MD simulation to explore different conformational states of the Escherichia coli adenylate kinase. Based on the simulation results, we propose a possible entrance/release order of substrates during the catalytic cycle. The substrate-free protein prefers an open conformation, but changes to a closed state once ATP·Mg enters into its binding pocket first and then AMP does. After the reaction of ATP transferring the terminal phosphate group to AMP, ADP·Mg and ADP are released sequentially, and finally the whole catalyze cycle is completed. Detailed contact and distance analysis reveals that the entrance/release order of substrates may be largely controlled by electrostatic interactions between the protein and the substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号