首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21337篇
  免费   1496篇
  国内免费   11篇
  22844篇
  2024年   27篇
  2023年   67篇
  2022年   242篇
  2021年   414篇
  2020年   247篇
  2019年   310篇
  2018年   531篇
  2017年   393篇
  2016年   680篇
  2015年   1126篇
  2014年   1223篇
  2013年   1393篇
  2012年   1825篇
  2011年   1707篇
  2010年   1099篇
  2009年   912篇
  2008年   1344篇
  2007年   1185篇
  2006年   1053篇
  2005年   971篇
  2004年   958篇
  2003年   777篇
  2002年   784篇
  2001年   627篇
  2000年   632篇
  1999年   422篇
  1998年   166篇
  1997年   129篇
  1996年   119篇
  1995年   87篇
  1994年   82篇
  1993年   69篇
  1992年   157篇
  1991年   125篇
  1990年   88篇
  1989年   103篇
  1988年   70篇
  1987年   65篇
  1986年   69篇
  1985年   53篇
  1984年   47篇
  1983年   37篇
  1982年   27篇
  1981年   24篇
  1978年   28篇
  1976年   32篇
  1975年   29篇
  1973年   33篇
  1971年   23篇
  1969年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) by supplying NADPH for antioxidant systems. We investigated whether the ICDH would be a vulnerable target of peroxynitrite anion (ONOO-) as a purified enzyme, in intact cells, and in liver mitochondria from ethanol-fed rats. Synthetic peroxynitrite and 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a peroxynitrite-generating compound, inactivated ICDH in a dose- and time-dependent manner. The inactivation of ICDH by peroxynitrite or SIN-1 was reversed by dithiothreitol. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. Immunoblotting analysis of peroxynitrite-modified ICDH indicates that S-nitrosylation of cysteine and nitration of tyrosine residues are the predominant modifications. Using electrospray ionization mass spectrometry (ESI-MS) with tryptic digestion of protein, we found that peroxynitrite forms S-nitrosothiol adducts on Cys305 and Cys387 of ICDH. Nitration of Tyr280 was also identified, however, this modification did not significantly affect the activity of ICDH. These results indicate that S-nitrosylation of cysteine residues on ICDH is a mechanism involving the inactivation of ICDH by peroxynitrite. The structural alterations of modified enzyme were indicated by the changes in protease susceptibility and binding of the hydrophobic probe 8-anilino-1-napthalene sulfonic acid. When U937 cells were incubated with 100 microM SIN-1 bolus, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed. Using immunoprecipitation and ESI-MS, we were also able to isolate and positively identify S-nitrosylated and nitrated mitochondrial ICDH from SIN-1-treated U937 cells as well as liver from ethanol-fed rats. Inactivation of ICDH resulted in the pro-oxidant state of cells reflected by an increased level of intracellular reactive oxygen species, a decrease in the ratio of [NADPH]/[NADPH + NADP+], and a decrease in the efficiency of reduced glutathione turnover. The peroxynitrite-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   
992.
Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than in compression, and theoretical analyses have suggested that this tension–compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone. Ten human cartilage samples from six patellofemoral joints, and 10 bovine cartilage specimens from three calf patellofemoral joints were tested in unconfined compression. The peak fluid load support was measured at 79±11% and 69±15% at the articular surface and deep zone of human cartilage, respectively, and at 94±4% and 71±8% at the articular surface and deep zone of bovine calf cartilage, respectively. Statistical analyses confirmed both hypotheses of this study. These experimental results suggest that the tension–compression nonlinearity of cartilage is an essential functional property of the tissue which makes interstitial fluid pressurization the dominant mechanism of load support in articular cartilage.  相似文献   
993.
994.
C1qRP/CD93 is a cell surface receptor predominantly expressed on monocytes, neutrophils, endothelial cells, and early stem cell precursors. In phagocytic cells, it has been characterized as contributing to the enhancement of FcR- and CR1-induced phagocytosis triggered by innate immune system defense collagens such as C1q and mannose binding lectin (MBL). Previously, we demonstrated a high level of glycosylation on C1qRP/CD93 that was predominantly O-linked. In this study, we investigate the role of glycosylation in C1qRP/CD93 stability first by inhibiting O-glycosylation by addition of benzyl 2-acetamido-2-deoxy-alpha-D-galactopyranoside (BAG) to the human histiocytic cell line U937, and secondly, by expression of C1qRP/CD93 in the CHO-derived cell line ldlD which has a reversible defect in protein glycosylation. In both U937 cells and in ldlD cells transfected to express C1qRP/CD93, glycosylation deficiency caused cell surface expression levels of C1qRP/CD93 to decrease, concomitant with the detection of C1qRP/CD93 reactivity in the culture media. Metabolic labeling studies show that when glycosylation is absent, C1qRP/CD93 is synthesized and rapidly released into the culture supernatant or degraded. These studies demonstrate that O-glycosylation is important in the stable cell surface expression of C1qRP/CD93 .  相似文献   
995.
Kwon KB  Kim JH  Lee YR  Lee HY  Jeong YJ  Rho HW  Ryu DG  Park JW  Park BH 《Life sciences》2003,73(2):181-191
We previously showed that Amomum xanthoides extract prevented alloxan-induced diabetes through the suppression of NF-kappaB activation. In this study, the preventive effects of A. xanthoides extract on cytokine-induced beta-cell destruction were examined. Cytokines produced by immune cells infiltrating pancreatic islets are important mediators of beta-cell destruction in insulin-dependent diabetes mellitus. A. xanthoides extract completely protected interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma)-mediated cytotoxicity in rat insulinoma cell line (RINm5F). Incubation with A. xanthoides extract resulted in a significant reduction in IL-1beta and IFN-gamma-induced nitric oxide (NO) production, a finding that correlated well with reduced levels of the inducible form of NO synthase (iNOS) mRNA and protein. The molecular mechanism by which A. xanthoides extract inhibited iNOS gene expression appeared to involve the inhibition of NF-kappaB activation. Our results revealed the possible therapeutic value of A. xanthoides extract for the prevention of diabetes mellitus progression.  相似文献   
996.
997.
Park SJ  Zhao H  Spitz MR  Grossman HB  Wu X 《Mutation research》2003,536(1-2):131-137
NAD(P)H:quinone oxidoreductase (NQO1) is a detoxification enzyme that plays a critical role in protecting cells against chemically induced oxidative stress, cytotoxicity, mutagenicity, and carcinogenicity. NQO1 protects cells from oxidative damage by preventing the generation of reactive oxygen species and reducing certain environmental carcinogens, such as nitroaromatic compounds, heterocyclic amines, and possible cigarette smoke condensate. A C-->T single nucleotide polymorphism in exon 6 was shown to reduce NQO1 enzyme activity, which may diminish the protection provided by NQO1. Therefore, we hypothesized that people with the variant allele genotypes of NQO1 are at higher risk for bladder cancer. In an ongoing case-control study, the NQO1 genotypes were successfully identified by polymerase chain reaction restriction fragment length polymorphism in 265 bladder cancer patients and 261 control subjects matched for age, sex, and ethnicity. The frequency of the variant NQO1 allele was 18% for controls and 21% for cases. The variant allele genotypes of NQO1 were associated with a higher risk of bladder cancer in Caucasians (odds ratio (OR)=1.51; 95% confidence interval (CI)=1.01-2.25). Further analysis in Caucasians showed an elevated bladder cancer risk in men (OR=1.75; 95% CI=1.08-2.85) but not in women (OR=1.16; 95% CI=0.57-2.37). In addition, the variant allele genotypes were associated with higher bladder cancer risk in ever smokers (OR=1.78; 95% CI=1.06-3.00), but not in never smokers (OR=1.19; 95% CI=0.65-2.20). These results suggest that the NQO1 genetic polymorphism modulates bladder cancer risk, especially in men and ever smokers.  相似文献   
998.
Park YK  Park E  Kim JS  Kang MH 《Mutation research》2003,529(1-2):77-86
Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75 +/- 1.55 microm versus after supplementation: 70.25 +/- 1.31 microm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.  相似文献   
999.
1000.
The glycogen branching enzyme gene (glgB) from Pectobacterium chrysanthemi PY35 was cloned, sequenced, and expressed in Escherichia coli. The glgB gene consisted of an open reading frame of 2196bp encoding a protein of 731 amino acids (calculated molecular weight of 83,859Da). The glgB gene is upstream of glgX and the ORF starts the ATG initiation codon and ends with the TGA stop codon at 2bp upstream of glgX. The enzyme was 43-69% sequence identical with other glycogen branching enzymes. The enzyme is the most similar to GlgB of E. coli and contained the four regions conserved among the alpha-amylase family. The glycogen branching enzyme (GlgB) was purified and the molecular weight of the enzyme was estimated to be 84kDa by SDS-PAGE. The glycogen branching enzyme was optimally active at pH 7 and 30 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号