首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   56篇
  国内免费   1篇
  713篇
  2022年   4篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   11篇
  2014年   17篇
  2013年   43篇
  2012年   50篇
  2011年   34篇
  2010年   21篇
  2009年   33篇
  2008年   49篇
  2007年   47篇
  2006年   41篇
  2005年   47篇
  2004年   40篇
  2003年   31篇
  2002年   41篇
  2001年   12篇
  2000年   18篇
  1999年   12篇
  1998年   5篇
  1997年   10篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   14篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   8篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1971年   2篇
  1970年   3篇
  1969年   4篇
  1968年   2篇
排序方式: 共有713条查询结果,搜索用时 0 毫秒
31.
There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.  相似文献   
32.
Genes SNO1 and SNZ1 are Saccharomyces cerevisiae homologues of PDX2 and PDX1 which participate in pyridoxine synthesis in the fungus Cercospora nicotianae. In order to clarify their function, the two genes SNO1 and SNZ1 were expressed in Escherichia coli either individually or simultaneously and with or without a His-tag. When expressed simultaneously, the two protein products formed a complex and showed glutaminase activity. When purified to homogeneity, the complex exhibited a specific activity of 480 nmol.mg(-1).min(-1) as glutaminase, with a Km of 3.4 mm for glutamine. These values are comparable to those for other glutamine amidotransferases. In addition, the glutaminase activity was impaired by 6-diazo-5-oxo-L-norleucine in a time- and dose-dependent manner and the enzyme was protected from deactivation by glutamine. These data suggest strongly that the complex of Sno1p and Snz1p is a glutamine amidotransferase with the former serving as the glutaminase, although the activity was barely detectable with Sno1p alone. The function of Snz1p and the amido acceptor for ammonia remain to be identified.  相似文献   
33.
Objective: To further address the function of the Y5 receptor in energy homeostasis, we investigated the effects of a novel spironolactone Y5 antagonist in diet-induced obese (DIO) mice. Methods and Procedures: Male C57BL/6 or Npy5r−/− mice were adapted to high-fat (HF) diet for 6–10 months and were submitted to three experimental treatments. First, the Y5 antagonist at a dose of 10 or 30 mg/kg was administered for 1 month to DIO C57BL/6 or Npy5r−/− mice. Second, the Y5 antagonist at 30 mg/kg was administered for 1.5 months to DIO C57BL/6 mice, and insulin sensitivity was evaluated using an insulin tolerance test. After a recovery period, nuclear magnetic resonance measurement was performed to evaluate body composition. Third, DIO mice were treated with the Y5 antagonist alone, or in combination with 10% food restriction, or with another anorectic agent, sibutramine at 10 mg/kg, for 1.5 months. Plasma glucose, insulin, and leptin levels, and adipose tissue weights were quantified. Results: The spironolactone Y5 antagonist significantly reduced body weight in C57BL DIO mice, but not in Npy5r−/− DIO mice. The Y5 antagonist produced a fat-selective loss of body weight, and ameliorated obesity-associated insulin resistance in DIO mice. In addition, the Y5 antagonist combined with either food restriction or sibutramine tended to produce greater body weight loss, as compared with single treatment. Discussion: These findings demonstrate that the Y5 receptor is an important mediator of energy homeostasis in rodents.  相似文献   
34.
The mammalian bromodomain protein Brd4 interacts with mitotic chromosomes by binding to acetylated histone H3 and H4 and is thought to play a role in epigenetic memory. Mitotic cells are susceptible to antimicrotubule drugs. These drugs activate multiple response pathways and arrest cells at mitosis. We found that Brd4 was rapidly released from chromosomes upon treatment with antimicrotubule drugs, including the reversible agent nocodazole. Yet, when nocodazole was withdrawn, Brd4 was reloaded onto chromosomes, and cells proceeded to complete cell division. However, cells in which a Brd4 allele was disrupted (Brd4+/-), and expressing only half of the normal Brd4 levels, were defective in reloading Brd4 onto chromosomes. Consequently, Brd4+/- cells were impaired in their ability to recover from nocodazole-induced mitotic arrest: a large fraction of +/- cells failed to reach anaphase after drug withdrawal, and those that entered anaphase showed an increased frequency of abnormal chromosomal segregation. The reloading defect observed in Brd4+/- cells coincided with selective hypoacetylation of lysine residues on H3 and H4. The histone deacetylase inhibitor trichostatin A increased global histone acetylation and perturbed nocodazole-induced Brd4 unloading. Brd4 plays an integral part in a cellular response to drug-induced mitotic stress by preserving a properly acetylated chromatin status.  相似文献   
35.
The antibacterial activities and membrane binding of nukacin ISK-1 and its fragments and mutants were evaluated to delineate the determinants governing structure-function relationships. The tail region (nukacin(1-7)) and ring region (nukacin(7-27)) were shown to have no antibacterial activity and also had no synergistic effect on each other or even on nukacin ISK-1. Both a fragment with three lysines in the N terminus deleted (nukacin(4-27)) and a mutant with three lysines in the N terminus replaced with alanine (K1-3A nukacin ISK-1) imparted very low activity (32-fold lower than nukacin ISK-1) and also exhibited a similar antagonistic effect on nukacin ISK-1. Addition of two lysine residues at the N terminus (+2K nukacin ISK-1) provided no further increased antibacterial activity. Surface plasmon resonance sensorgrams and kinetic rate constants determined by a BIAcore biosensor revealed that nukacin ISK-1 has remarkably higher binding affinity to anionic model membrane than to zwitterionic model membrane. Similar trends of strong binding responses and kinetics were indicated by the high affinities of nukacin ISK-1 and +2K nukacin ISK-1, but there was no binding of tail region, ring region, nukacin(4-27), and K1-3A nukacin ISK-1 to the anionic model membrane. Our findings therefore suggest that the complete structure of nukacin ISK-1 is necessary for its full activity, in which the N-terminus three lysine residues play a crucial role in electrostatic binding to the target membrane and therefore nukacin ISK-1's ability to exert its potent antibacterial activity.  相似文献   
36.
We investigated the effects of oolong tea on the basic metabolism of plasma lipids in mice under restraint stress. When a lipid emulsion (Intralipid 20%; a lipid emulsion containing 20% soybean oil) was injected intravenously into mice, the restraint stress prolonged the half-life (T 1/2) of elimination for plasma triglyceride (TG) from 28.7 to 55.5 min. The elimination rate per minute was 48.2% in stressed mice with the rate in starved control mice as 100%. Therefore, TG metabolism was disrupted by the stress, and the use of TG as an energy source decreased. We found that the metabolism of lipids significantly response to the restrained stress in the present study. Plasma TG was 515.9 +/- 29.9mg/dl 35min after Intralipid administration in control stressed mice, 478.7 +/- 26.7 mg/dl in the stressed group given caffeine 100 mg/kg of body weight, and 418.3 +/- 18.4 mg/dl in the stressed group given 1,000 mg/kg oolong tea, an improvement by 7.2% and 18.9%, respectively, with the value for the untreated control group. The intake of oolong tea alleviated the stress-induced decrease in the rate of blood lipid metabolism; this effect may have arisen from some non-specific stress-relieving property of the tea or from acceleration of lipid metabolism by properties of polyphenols, etc. in tea. Oolong tea had anti-stress effects on plasma TG metabolism, and the effects did not depend on caffeine.  相似文献   
37.
The bacterial isolates from normal and diseased branches of Kappaphycus alvarezii and Eucheuma denticulatum in the Philippines were examined for possible role in the development of the ice-ice disease. The numbers of bacteria on and in ice-iced branches were 10–100 times greater than those from normal, healthy ones. Gram-positive bacteria predominated in almost all branch sources, but with an increasing proportion of agar-lysing bacteria in branches suffering from the ice-ice disease. These agar-lysing bacteria were composed of yellow and non-pigmented, spreading colonies identified to the Cytophaga-Flavobacterium complex and the Vibrio group. Among isolates which mainly appeared on ice-iced branches, two strains, designated as P11 (Vibrio sp.) and P25 (Cytophage sp.), which showed pathogenic activity, were obtained. These strains caused early ice-ice whitening of K. alvarezii especially when subjecting branches to environmental stress, such as reduced salinity and light intensity, suggesting that these bacteria were occasionally pathogenic. This paper offers new evidence of bacterial role in the development of so-called ice-ice disease among farmed species of Kappaphycus.  相似文献   
38.
The distribution of the secreted protein ribonuclease T1 (RntA) fused with the enhanced green fluorescent protein (EGFP), RntA-EGFP, was visualized in hyphae of Aspergillus oryzae in the presence of a protein transport inhibitor, brefeldin A, cytochalasin A, or nocodazole. During treatment with the protein transport inhibitors, the distribution of RntA-EGFP changed and distinct patterns of fluorescence accumulation were observed. The addition of brefeldin A caused RntA-EGFP fluorescence to appear in reticular networks, and the disruption of the polymerization of actin filaments by cytochalasin A caused an increase in RntA-EGFP fluorescence intensity in the hyphae without accumulation in a specific cellular component. In contrast, RntA-EGFP fluorescence was distributed in different parts of a hypha during treatment with nocodazole, a compound that depolymerizes microtubules. In addition, quantitative analysis was performed using the RntA-EGFP visualization system to analyze the relative amount of RntA-EGFP secreted into the culture medium during treatment with the protein transport inhibitors.  相似文献   
39.
It remained very difficult to manipulate gene expression in chick embryos until the advent of in ovo electroporation which enabled the induction of both gain-of-function, and recently loss-of-function, of a gene of interest at a specific developmental stage. Gain-of-function by electroporation is so effective that it has become widely adopted in developmental studies in the chick. Recently, it became possible to induce loss-of-function by introducing an siRNA expression vector by electroporation. In this review, the methods of electroporation for gain-of-function and for loss-of-function by siRNA are discussed.  相似文献   
40.
It has been demonstrated that Saccharomyces cerevisiae Vam6p/Vps39p plays a critical role in the tethering steps of vacuolar membrane fusion by facilitating guanine nucleotide exchange on small guanosine triphosphatase (GTPase) Vam4p/Ypt7p. We report here the identification and characterization of a novel protein in Aspergillus nidulans, AvaB, that exhibits similarity to Vam6p/Vps39p and plays a critical role in vacuolar morphogenesis in A. nidulans. AvaB is comprised of 1058 amino acids with amino-terminal citron homology (CNH) and central clathrin homology (CLH) domains, as observed for other Vam6p/Vps39p family proteins. Disruption of avaB in A. nidulans resulted in the fragmentation of vacuoles and reduced growth rate under various growth conditions, implying its importance in maintaining vacuolar morphology and function. Yeast two-hybrid analysis demonstrated the interaction of AvaB with AvaA, a Vam4p/Ypt7p homolog in A. nidulans, as well as the homooligomer formation of AvaB, suggesting that AvaB performs its function through hetero- or homophilic protein-protein interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号