首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67820篇
  免费   5447篇
  国内免费   5801篇
  2024年   101篇
  2023年   678篇
  2022年   1319篇
  2021年   2973篇
  2020年   2170篇
  2019年   2701篇
  2018年   2795篇
  2017年   2297篇
  2016年   2917篇
  2015年   3654篇
  2014年   4651篇
  2013年   5072篇
  2012年   5881篇
  2011年   5518篇
  2010年   3842篇
  2009年   3385篇
  2008年   4084篇
  2007年   3581篇
  2006年   3202篇
  2005年   2634篇
  2004年   2524篇
  2003年   2358篇
  2002年   1992篇
  2001年   1354篇
  2000年   1086篇
  1999年   825篇
  1998年   578篇
  1997年   445篇
  1996年   428篇
  1995年   446篇
  1994年   378篇
  1993年   299篇
  1992年   352篇
  1991年   303篇
  1990年   237篇
  1989年   234篇
  1988年   157篇
  1987年   200篇
  1986年   173篇
  1985年   153篇
  1984年   108篇
  1983年   105篇
  1982年   100篇
  1981年   83篇
  1980年   55篇
  1979年   65篇
  1978年   67篇
  1977年   54篇
  1973年   66篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
91.
An antioxidant activity of the water-alcohol extracts of leaves of ten herbs from Western Siberia was studied. In vivo the capability of extracts to protect cells of Escherichia coli against the bacteriostatic action of H 2O2 and the influence of the extracts on the expression of the antioxidant gene katG coding catalase-hydroperoxidase I were investigated. In vitro the radical-binding activity with DPhPG· (1,1-diphenyl-2-picrylhydrazyl radical), the chelating capability with ferrozine, and total composition of flavonoids and tannins were determined. The extracts of Filipendula stepposa and Limonium gmelinii were characterized by the highest antioxidant activity. According to data, the test extracts could have an antioxidant effect on bacteria in different ways at once including the direct inhibition of ROS (reactive oxygen species), iron ion chelation and antioxidant gene induction.  相似文献   
92.
Small molecule cholinesterases inhibitor (ChEI) provides an effective therapeutic strategy to treat Alzheimer’s disease (AD). Currently, the discovery of new ChEI with multi-target effect is still of great importance. Herein, we report the synthesis, structure–activity relationship study and biological evaluation of a series of tacrine-cinnamic acid hybrids as new ChEIs. All target compounds are evaluated for their in vitro cholinesterase inhibitory activities. The representatives which show potent activity on cholinesterase, are evaluated for the amyloid β-protein self-aggregation inhibition and in vivo assays. The optimal compound 19, 27, and 30 (human AChE IC50?=?10.2?±?1.2, 16.5?±?1.7, and 15.3?±?1.8?nM, respectively) show good performance in ameliorating the scopolamine-induced cognition impairment and preliminary safety in hepatotoxicity evaluation. These compounds deserve further evaluation for the development of new therapeutic agents against AD.  相似文献   
93.
Fedorov  D. A.  Frolova  M. Yu.  Krasovskaya  I. E.  Kuleva  N. V. 《Biophysics》2019,64(5):808-811
Biophysics - Abstract—The goal of the present study was to investigate the molecular mechanisms that underlie heart and skeletal muscle damage in male Wistar rats weighing 200–250 g in...  相似文献   
94.
Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology.  相似文献   
95.
目的对virB2基因编码蛋白进行分析,为virB2基因及其编码蛋白功能提供实验依据。方法利用多种生物学软件以及网站对VirB2蛋白的结构和功能进行分析预测,VirB2蛋白序列通过基因推导获得并由生物公司合成,然后通过免疫动物实验制备鼠抗VirB2蛋白多克隆抗体,同时设计进行VirB2蛋白细胞毒试验(MTT法)。结果virB2基因编码蛋白属于疏水性蛋白,为鞭毛样结构,有较强的细胞毒作用。结论对VirB2蛋白的结构和功能进行了分析预测,证明VirB2蛋白在H.pylori相关的致病性特别是引起胃黏膜炎症方面起到一定的作用,能够为研究H.pylori致病机制提供帮助。  相似文献   
96.
97.
Biophysics - The biophysical aspects of the effects of ultrasound on biological tissues are considered. A mathematical model that describes the effects of the primary interaction of mechanical...  相似文献   
98.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
99.
The goal of this study was to assess the relationship between Aβ deposition and white matter pathology (i.e., white matter hyperintensities, WMH) on microstructural integrity of the white matter. Fifty-seven participants (mean age: 78±7 years) from an ongoing multi-site research program who spanned the spectrum of normal to mild cognitive impairment (Clinical dementia rating 0–0.5) and low to high risk factors for arteriosclerosis and WMH pathology (defined as WMH volume >0.5% total intracranial volume) were assessed with positron emission tomography (PET) with Pittsburg compound B (PiB) and magnetic resonance and diffusion tensor imaging (DTI). Multivariate analysis of covariance were used to investigate the relationship between Aβ deposition and WMH pathology on fractional anisotropy (FA) from 9 tracts of interest (i.e., corona radiata, internal capsule, cingulum, parahippocampal white matter, corpus callosum, superior longitudinal, superior and inferior front-occipital fasciculi, and fornix). WMH pathology was associated with reduced FA in projection (i.e., internal capsule and corona radiate) and association (i.e., superior longitudinal, superior and inferior fronto-occipital fasciculi) fiber tracts. Aβ deposition (i.e., PiB positivity) was associated with reduced FA in the fornix and splenium of the corpus callosum. There were interactions between PiB and WMH pathology in the internal capsule and parahippocampal white matter, where Aβ deposition reduced FA more among subjects with WMH pathology than those without. However, accounting for apoE ε4 genotype rendered these interactions insignificant. Although this finding suggests that apoE4 may increase amyloid deposition, both in the parenchyma (resulting in PiB positivity) and in blood vessels (resulting in amyloid angiopathy and WMH pathology), and that these two factors together may be associated with compromised white matter microstructural integrity in multiple brain regions, additional studies with a longitudinal design will be necessary to resolve this issue.  相似文献   
100.
Tyrosine phosphorylation and dephosphorylation have emerged as fundamentally important mechanisms of signal transduction and regulation in eukaryotic cells, governing many processes, but little has been known about their functions in filamentous fungi. In this study, we deleted two putative protein tyrosine phosphatase (PTP) genes (BcPTPA and BcPTPB) in Botrytis cinerea, encoding the orthologs of Saccharomyces cerevisiae Ptp2 and Ptp3, respectively. Although BcPtpA and BcPtpB have opposite functions in conidiation, they are essential for sclerotial formation in B. cinerea. BcPTPA and BcPTPB deletion mutants ΔBcPtpA-10 and ΔBcPtpB-4 showed significantly increased sensitivity to osmotic and oxidative stresses, and to cell wall damaging agents. Inoculation tests showed that both mutants exhibited dramatically decreased virulence on tomato leaves, apples and grapes. In S. cerevisiae, it has been shown that Ptp2 and Ptp3 negatively regulate the high-osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway. Although both BcPtpA and BcPtpB were able to inactive Hog1 and Mpk1 in S. cerevisiae, in contrast to S. cerevisiae, they positively regulate phosphorylation of BcSak1 (the homologue of Hog1) and BcBmp3 (the homologue of Mpk1) in B. cinerea under stress conditions. These results demonstrated that functions of PTPs in B. cinerea are different from those in S. cerevisiae, and BcPtpA and BcPtpB play important roles in regulation of vegetative development, virulence and in adaptation to oxidative, osmotic and cell-wall damage stresses in B. cinerea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号