首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40069篇
  免费   3272篇
  国内免费   3731篇
  2024年   75篇
  2023年   409篇
  2022年   1034篇
  2021年   1743篇
  2020年   1282篇
  2019年   1651篇
  2018年   1607篇
  2017年   1226篇
  2016年   1621篇
  2015年   2323篇
  2014年   2882篇
  2013年   3114篇
  2012年   3697篇
  2011年   3405篇
  2010年   2219篇
  2009年   2041篇
  2008年   2526篇
  2007年   2221篇
  2006年   1952篇
  2005年   1654篇
  2004年   1484篇
  2003年   1400篇
  2002年   1228篇
  2001年   702篇
  2000年   558篇
  1999年   498篇
  1998年   378篇
  1997年   289篇
  1996年   282篇
  1995年   247篇
  1994年   178篇
  1993年   147篇
  1992年   174篇
  1991年   125篇
  1990年   98篇
  1989年   96篇
  1988年   70篇
  1987年   70篇
  1986年   65篇
  1985年   76篇
  1984年   15篇
  1983年   27篇
  1982年   27篇
  1981年   16篇
  1980年   10篇
  1979年   10篇
  1977年   10篇
  1974年   7篇
  1969年   15篇
  1967年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging‐related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR‐10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR‐10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up‐ or downregulate miR‐10a in young and old hMSCs. Upregulation of miR‐10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR‐10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full‐length 3′‐UTR region of KLF4 harboring the seed‐matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR‐10a mimic into cells. The luciferase activity was significantly repressed by the miR‐10a mimic, proving the direct binding of miR‐10a to the 3′‐UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR‐10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging‐related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc.  相似文献   
993.
The presence of an appropriate number of viable cells is prerequisite for successive differentiation during chondrogenesis. Chondrogenic differentiation has been reported to be influenced by mechanical stimuli. This research aimed to study the effects of cyclic compressive stress on cell viability of rat bone marrow‐derived MSCs (BMSCs) during chondrogenesis as well as its underlying mechanisms. The results showed that dynamic compression increased cell quantity and viability remarkably in the early stage of chondrogenesis, during which the expression of Ihh, Cyclin D1, CDK4, and Col2α1 were enhanced significantly. Possible signal pathways implicated in the process were explored in our study. MEK/ERK and p38 MAPK were not found to function in this process while BMP signaling seemed to play an important role in the mechanotransduction during chondrogenic proliferation. In conclusion, dynamic compressive stress could enhance cell viability during chondrogenesis, which might be achieved by activating BMP signaling. J. Cell. Physiol. 228: 1935–1942, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
994.
Many genetic mouse models of Huntington’s disease (HD) have established that mutant huntingtin (htt) accumulates in various subcellular regions to affect a variety of cellular functions, but whether and how synaptic mutant htt directly mediates HD neuropathology remains to be determined. We generated transgenic mice that selectively express mutant htt in the presynaptic terminals. Although it was not overexpressed, synaptic mutant htt caused age-dependent neurological symptoms and early death in mice as well as defects in synaptic neurotransmitter release. Mass spectrometry analysis of synaptic fractions and immunoprecipitation of synapsin-1 from HD CAG150 knockin mouse brains revealed that mutant htt binds to synapsin-1, a protein whose phosphorylation is critical for neurotransmitter release. We found that polyglutamine-expanded exon1 htt binds to the C-terminal region of synapsin-1 to reduce synapsin-1 phosphorylation. Our findings point to a critical role for synaptic htt in the neurological symptoms of HD, providing a new therapeutic target.  相似文献   
995.
Invasive ductal adenocarcinoma (IDA) of the pancreas manifests poor prognosis due to the early invasion and distant metastasis. In contrast, intraductal papillary mucinous adenoma or carcinoma (IPMA or IPMC) reveals better clinical outcomes. Various molecular mechanisms contribute to these differences but entire picture is still unclear. Recent researches emphasized the important role of miRNA in biological processes including cancer invasion and metastasis. We previously described that miR‐126 is down‐regulated in IDA compared with IPMA or IPMC, and miR‐126 regulates the expression of invasion related molecule disintegrin and metalloproteinase domain‐containing protein 9 (ADAM9). Assessing the difference of miRNA expression profiles of IDA, IPMA, and IPMC, we newly identified miR‐197 as an up‐regulated miRNA specifically in IDA. Expression of miR‐197 in pancreatic cancer cells resulted in the induction of epithelial–mesenchymal transition (EMT) along with the down‐regulation of p120 catenin which is a putative target of miR‐197. Direct interaction between miR‐197 and p120 catenin mRNA sequence was confirmed by 3′UTR assay, and knockdown of p120 catenin recapitulated EMT induction in pancreatic cancer cells. In situ hybridization of miR‐197 and immunohistochemistry of p120 catenin showed mutually exclusive patterns suggesting pivotal role of miR‐197 in the regulation of p120 catenin. This miR‐197/p120 catenin axis could be a novel therapeutic target. J. Cell. Physiol. 228: 1255–1263, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
996.
A ctin filaments, with the aid of multiple accessory proteins, self-assemble into a variety of network patterns. We studied the organization and dynamics of the actin network in nonadhesive regions of cells bridging fibronectin-coated adhesive strips. The network was formed by actin nodes associated with and linked by myosin II and containing the formin disheveled-associated activator of morphogenesis 1 (DAAM1) and the cross-linker filamin A (FlnA). After Latrunculin A (LatA) addition, actin nodes appeared to be more prominent and demonstrated drift-diffusion motion. Superresolution microscopy revealed that, in untreated cells, DAAM1 formed patches with a similar spatial arrangement to the actin nodes. Node movement (diffusion coefficient and velocity) in LatA-treated cells was dependent on the level and activity of myosin IIA, DAAM1, and FlnA. Based on our results, we developed a computational model of the dynamic formin-filamin-actin asters that can self-organize into a contractile actomyosin network. We suggest that such networks are critical for connecting distant parts of the cell to maintain the mechanical coherence of the cytoplasm.  相似文献   
997.
c-Jun NH2-terminal kinases (JNKs) and phosphatidylinositol 3-kinase (PI3-K) play critical roles in chronic diseases such as cancer, type II diabetes, and obesity. We describe here the binding of quercetagetin (3,3′,4′,5,6,7-hydroxyflavone), related flavonoids, and SP600125 to JNK1 and PI3-K by ATP-competitive and immobilized metal ion affinity-based fluorescence polarization assays and measure the effect of quercetagetin on JNK1 and PI3-K activities. Quercetagetin attenuated the phosphorylation of c-Jun and AKT, suppressed AP-1 and NF-κB promoter activities, and also reduced cell transformation. It attenuated tumor incidence and reduced tumor volumes in a two-stage skin carcinogenesis mouse model.Our crystallographic structure determination data show that quercetagetin binds to the ATP-binding site of JNK1. Notably, the interaction between Lys55, Asp169, and Glu73 of JNK1 and the catechol moiety of quercetagetin reorients the N-terminal lobe of JNK1, thereby improving compatibility of the ligand with its binding site. The results of a theoretical docking study suggest a binding mode of PI3-K with the hydroxyl groups of the catechol moiety forming hydrogen bonds with the side chains of Asp964 and Asp841 in the p110γ catalytic subunit. These interactions could contribute to the high inhibitory activity of quercetagetin against PI3-K. Our study suggests the potential use of quercetagetin in the prevention or therapy of cancer and other chronic diseases.  相似文献   
998.
Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with those on the desert locust and other relevant studies. We attribute the presence of density-dependent phenotypic plasticity in the non-swarming Schistocerca species to phylogenetic conservatism, but there may be a possible role of local adaptation in further shaping the ultimate expressions of plasticity.  相似文献   
999.
Niacin (nicotinic acid) has been used for decades as a lipid-lowering drug. The clinical use of niacin to treat dyslipidemic conditions is limited by its side effects. Niacin, along with fibrates, are the only approved drugs which elevate high density lipoprotein cholesterol (HDLc) along with its effects on low density lipoprotein cholesterol (LDLc) and triglycerides. Whether niacin has a beneficial role in lowering cardiovascular risk on the background of well-controlled LDLc has not been established. In fact, it remains unclear whether niacin, either in the setting of well-controlled LDLc or in combination with other lipid-lowering agents, confers any therapeutic benefit and if so, by which mechanism. The results of recent trials reject the hypothesis that simply raising HDLc is cardioprotective. However, in the case of the clinical trials, structural limitations of trial design complicate their interpretation. This is also true of the most recent Heart Protection Study 2-Treatment of HDLc to Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial in which niacin is combined with an antagonist of the D prostanoid (DP) receptor. Human genetic studies have also questioned the relationship between cardiovascular benefit and HDLc. It remains to be determined whether niacin may have clinical utility in particular subgroups, such as statin intolerant patients with hypercholesterolemia or those who cannot achieve a sufficient reduction in LDLc. It also is unclear whether a potentially beneficial effect of niacin is confounded by DP antagonism in HPS2-THRIVE.  相似文献   
1000.
2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5′-dithio-bis-(2-nitrobenzoic acid) and ZnCl2, which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H2O2. SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号