首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26619篇
  免费   2302篇
  国内免费   2715篇
  31636篇
  2024年   69篇
  2023年   265篇
  2022年   623篇
  2021年   1006篇
  2020年   838篇
  2019年   1001篇
  2018年   1034篇
  2017年   825篇
  2016年   1009篇
  2015年   1558篇
  2014年   1898篇
  2013年   2119篇
  2012年   2492篇
  2011年   2305篇
  2010年   1512篇
  2009年   1325篇
  2008年   1735篇
  2007年   1498篇
  2006年   1399篇
  2005年   1144篇
  2004年   1114篇
  2003年   1043篇
  2002年   915篇
  2001年   477篇
  2000年   356篇
  1999年   288篇
  1998年   255篇
  1997年   175篇
  1996年   151篇
  1995年   159篇
  1994年   128篇
  1993年   97篇
  1992年   113篇
  1991年   83篇
  1990年   81篇
  1989年   85篇
  1988年   49篇
  1987年   49篇
  1986年   50篇
  1985年   49篇
  1984年   21篇
  1983年   27篇
  1982年   27篇
  1981年   13篇
  1980年   10篇
  1977年   11篇
  1975年   10篇
  1974年   12篇
  1973年   14篇
  1971年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
142.
143.
The activation of human epidermal growth factor receptor (hEGFR) involves a large conformational change in its soluble extracellular domains (sECD, residues 1–620), from a tethered to an extended conformation upon binding of ligands, such as EGF. It has been reported that this dynamic process is pH-dependent, that is, hEGFR can be activated by EGF at high pH to form an extended dimer but remains as an inactive monomer at low pH. In this paper, we perform all-atom molecular dynamics (MD) simulations starting from the tethered conformation of sECD:EGF complex, at pH 5.0 and 8.5, respectively. Simulation results indicate that sECD:EGF shows different dynamic properties between the two pHs, and the complex may have a higher tendency of activation at pH 8.5. Twenty residues, including 13 histidines, in sECD:EGF have different protonation states between the two pHs (calculated by the H++ server). The charge distribution at pH 8.5 is more favorable for forming an extended conformation toward the active state of sECD than that at pH 5.0. Our study may shed light on the mechanism of pH dependence of hEGFR activation.
Graphical abstract pH dependence of ligand-induced human epidermal growth factor receptor activation
  相似文献   
144.

Background

With evaluation for physical performance, measuring muscle mass is an important step in detecting sarcopenia. However, there are no methods to estimate muscle mass from blood sampling.

Methods

To develop a new equation to estimate total-body muscle mass with serum creatinine and cystatin C level, we designed a cross-sectional study with separate derivation and validation cohorts. Total body muscle mass and fat mass were measured using dual-energy x-ray absorptiometry (DXA) in 214 adults aged 25 to 84 years who underwent physical checkups from 2010 to 2013 in a single tertiary hospital. Serum creatinine and cystatin C levels were also examined.

Results

Serum creatinine was correlated with muscle mass (P < .001), and serum cystatin C was correlated with body fat mass (P < .001) after adjusting glomerular filtration rate (GFR). After eliminating GFR, an equation to estimate total-body muscle mass was generated and coefficients were calculated in the derivation cohort. There was an agreement between muscle mass calculated by the novel equation and measured by DXA in both the derivation and validation cohort (P < .001, adjusted R2 = 0.829, β = 0.95, P < .001, adjusted R2 = 0.856, β = 1.03, respectively).

Conclusion

The new equation based on serum creatinine and cystatin C levels can be used to estimate total-body muscle mass.  相似文献   
145.
146.
Tubular injury is one of the important determinants of progressive renal failure in diabetic nephropathy (DN), and TGF-β1 has been implicated in the pathogenesis of tubulointerstitial disease that characterizes proteinuric renal disease. The aim of this study was to identify novel therapeutic target molecules that play a role in the tubule damage of DN. We used an LC-MS/MS-based proteomic technique and human renal proximal epithelial cells (HRPTECs). Urine samples from Japanese patients with type 2 diabetes (n = 46) were used to quantify the candidate protein. Several proteins in HRPTECs in cultured media were observed to be driven by TGF-β1, one of which was 33-kDa IGFBP7, which is a member of IGFBP family. TGF-β1 up-regulated the expressions of IGFBP7 mRNA and protein in a dose- and time-dependent fashion via Smad2 and 4, but not MAPK pathways in HRPTECs. In addition, the knockdown of IGFBP7 restored the TGF-β1-induced epithelial to mesenchymal transition (EMT). In the immunohistochemical analysis, IGFBP7 was localized to the cytoplasm of tubular cells but not that of glomerular cells in diabetic kidney. Urinary IGFBP7 levels were significantly higher in the patients with macroalbuminuria and were correlated with age (r = 0.308, p = 0.037), eGFR (r = −0.376, p = 0.01), urinary β2-microglobulin (r = 0.385, p = 0.008), and urinary N-acetyl-beta-D-glucosaminidase (NAG) (r = 0.502, p = 0.000). A multivariate regression analysis identified urinary NAG and age as determinants associated with urinary IGFBP7 levels. In conclusion, our data suggest that TGF-β1 enhances IGFBP7 via Smad2/4 pathways, and that IGFBP7 might be involved in the TGF-β1-induced tubular injury in DN.  相似文献   
147.
148.
Mesenchymal stem cells (MSCs) from adult bone marrow maintain their self-renewal ability and the ability to differentiate into osteoblast. Thus, adult bone marrow MSCs play a key role in the regeneration of bone tissue. Previous studies indicated that TLR4 is expressed in MSCs and is critical in regulating the fate decision of MSCs. However, the exact functional role and underlying mechanisms of how TLR4 regulate bone marrow MSC proliferation and differentiation are unclear. Here, we found that activated TLR4 by its ligand LPS promoted the proliferation and osteogenic differentiation of MSCs in vitro. TLR4 activation by LPS also increased cytokine IL-6 and IL-1β production in MSCs. In addition, LPS treatment has no effect on inducing cell death of MSCs. Deletion of TLR4 expression in MSCs completely eliminated the effects of LPS on MSC proliferation, osteogenic differentiation and cytokine production. We also found that the mRNA and protein expression of Wnt3a and Wnt5a, two important factors in regulating MSC fate decision, was upregulated in a TLR4-dependent manner. Silencing Wnt3a with specific siRNA remarkably inhibited TLR4-induced MSC proliferation, while Wnt5a specific siRNA treatment significantly antagonized TLR4-induced MSC osteogenic differentiation. These results together suggested that TLR4 regulates bone marrow MSC proliferation and osteogenic differentiation through Wnt3a and Wnt5a signaling. These finding provide new data to understand the role and the molecular mechanisms of TLR4 in regulating bone marrow MSC functions. These data also provide new insight in developing new therapy in bone regeneration using MSCs by modulating TLR4 and Wnt signaling activity.  相似文献   
149.
BackgroundLeptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease.ConclusionsThis study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号