首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22305篇
  免费   1979篇
  国内免费   2566篇
  26850篇
  2024年   61篇
  2023年   220篇
  2022年   556篇
  2021年   891篇
  2020年   758篇
  2019年   897篇
  2018年   858篇
  2017年   705篇
  2016年   831篇
  2015年   1296篇
  2014年   1637篇
  2013年   1768篇
  2012年   2119篇
  2011年   1970篇
  2010年   1321篇
  2009年   1172篇
  2008年   1536篇
  2007年   1295篇
  2006年   1198篇
  2005年   997篇
  2004年   986篇
  2003年   906篇
  2002年   815篇
  2001年   369篇
  2000年   263篇
  1999年   219篇
  1998年   222篇
  1997年   134篇
  1996年   130篇
  1995年   132篇
  1994年   95篇
  1993年   77篇
  1992年   64篇
  1991年   46篇
  1990年   31篇
  1989年   44篇
  1988年   31篇
  1987年   28篇
  1986年   29篇
  1985年   25篇
  1984年   7篇
  1983年   10篇
  1982年   18篇
  1981年   5篇
  1977年   7篇
  1971年   4篇
  1969年   4篇
  1967年   5篇
  1965年   4篇
  1962年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
In this study, we prepared nano-hydroxyapatite/polyamide 66/glass fibre (n-HA/PA66/GF) bioactive bone screws. The microstructure, morphology and coating of the screws were characterised, and the adhesion, proliferation and viability of MC3T3-E1 cells on n-HA/PA66/GF scaffolds were determined using scanning electron microscope, CCK-8 assays and cellular immunofluorescence analysis. The results confirmed that n-HA/PA66/GF scaffolds were biocompatible and had no negative effect on MC3T3-E1 cells in vitro. To investigate the in vivo biocompatibility, internal fixation properties and osteogenesis of the bioactive screws, both n-HA/PA66/GF screws and metallic screws were used to repair intercondylar femur fractures in dogs. General photography, CT examination, micro-CT examination, histological staining and biomechanical assays were performed at 4, 8, 12 and 24 weeks after operation. The n-HA/PA66/GF screws exhibited good biocompatibility, high mechanical strength and extensive osteogenesis in the host bone. Moreover, 24 weeks after implantation, the maximum push-out load of the bioactive screws was greater than that of the metallic screws. As shown by their good cytocompatibility, excellent biomechanical strength and fast formation and ingrowth of new bone, n-HA/PA66/GF screws are thus suitable for orthopaedic clinical applications.  相似文献   
992.
Isoniazid (INH) and Rifampicin (RFP) are widely used in the world for the treatment of tuberculosis, but the hepatotoxicity is a major concern during clinical therapy. Previous studies showed that these drugs induced oxidative stress in liver, and several antioxidants abated this effect. Metallothionein (MT), a member of cysteine-rich protein, has been proposed as a potent antioxidant. This study attempts to determine whether endogenous expression of MT protects against INH and RFP-induced hepatic oxidative stress in mice. Wild type (MT+/+) and MT-null (MT−/−) mice were treated intragastrically with INH (150 mg/kg), RFP (300 mg/kg), or the combination (150 mg/kg INH +300 mg/kg RFP) for 21 days. The results showed that MT−/− mice were more sensitive than MT+/+ mice to INH and RFP-induced hepatic injuries as evidenced by hepatic histopathological alterations, increased serum AST levels and liver index, and hepatic oxidative stress as evidenced by the increase of MDA production and the change of liver antioxidant status. Furthermore, INH increased the protein expression of hepatic CYP2E1 and INH/RFP (alone or in combination) decreased the expression of hepatic CYP1A2. These findings clearly demonstrate that basal MT provides protection against INH and RFP-induced toxicity in hepatocytes. The CYP2E1 and CYP1A2 were involved in the pathogenesis of INH and RFP-induced hepatotoxicity.  相似文献   
993.
994.
995.
Prostate cancer (PCa) is a leading cause of death among males. It is currently estimated that inflammatory responses are linked to 15-20% of all deaths from cancer worldwide. PCa is dominated by complications arising from metastasis to the bone where the tumor cells interact with the bone microenvironment impairing the balance between bone formation and degradation. However, the molecular nature of this interaction is not completely understood. Heme oxygenase-1 (HO-1) counteracts oxidative damage and inflammation. Previous studies from our laboratory showed that HO-1 is implicated in PCa, demonstrating that endogenous HO-1 inhibits bone derived-prostate cancer cells proliferation, invasion and migration and decreases tumor growth and angiogenesis in vivo. The aim of this work was to analyze the impact of HO-1 modulated PCa cells on osteoblasts proliferation in vitro and on bone remodeling in vivo. Using a co-culture system of PC3 cells with primary mice osteoblasts (PMOs), we demonstrated that HO-1 pharmacological induction (hemin treatment) abrogated the diminution of PMOs proliferation induced by PCa cells and decreased the expression of osteoclast-modulating factors in osteoblasts. No changes were detected in the expression of genes involved in osteoblasts differentiation. However, co-culture of hemin pre-treated PC3 cells (PC3 Hem) with PMOs provoked an oxidative status and activated FoxO signaling in osteoblasts. The percentage of active osteoblasts positive for HO-1 increased in calvarias explants co-cultured with PC3 Hem cells. Nuclear HO-1 expression was detected in tumors generated by in vivo bone injection of HO-1 stable transfected PC3 (PC3HO-1) cells in the femur of SCID mice. These results suggest that HO-1 has the potential to modify the bone microenvironment impacting on PCa bone metastasis.  相似文献   
996.
997.
Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.  相似文献   
998.
【目的】通过基因组挖掘的方法,研究红树林来源白骨壤链霉菌Streptomyces avicenniae 9-9中多环稠合大环内酰胺(PTMs)类化合物的结构多样性。【方法】通过生物信息学分析白骨壤链霉菌基因组序列,寻找PTMs类化合物的生物合成相关基因;利用UPLC-MS/MS技术对该菌的次级代谢产物进行分析。【结果】在白骨壤链霉菌基因组中发现PTMs生物合成基因簇(aviA-D);从菌液提取物中鉴定出5个PTMs类化合物,其中包括ikarugamycin(化合物1)和capsimycin B(化合物2);基于PTMs类化合物5-6-5环类型的MS/MS碎裂规律,对化合物3–5的结构进行了推测。【结论】红树林来源白骨壤链霉菌S.avicenniae 9-9具有产生5-6-5环类型的PTMs类化合物的能力。  相似文献   
999.
Jun Cui  Shouheng Jin 《Autophagy》2016,12(7):1210-1211
Macroautophagy/autophagy is a conserved intracellular degradation system that traffics substrates including protein aggregates, defunct or disused organelles and invading pathogens to lysosomes via double-membrane vesicles called autophagosomes. BECN1/Beclin 1 functions as a key protein in autophagy initiation and progression; however, the role of BECN1 in innate immunity has not been fully investigated. Recently, we have found that USP19 affects the ubiquitination of BECN1, hence promoting the formation of autophagosomes and inhibiting DDX58/RIG-I-mediated type I interferon signaling.  相似文献   
1000.

Background

Caspase-1 is present in the cytosol as an inactive zymogen and requires the protein complexes named “inflammasomes” for proteolytic activation. However, it remains unclear whether the proteolytic activity of caspase-1 is confined only to the cytosol where inflammasomes are assembled to convert inactive pro-caspase-1 to active caspase-1.

Methods

We conducted meticulous data analysis method?s on proteomic, protein interaction, protein intracellular localization, and gene expressions of 114 experimentally identified caspase-1 substrates and 38 caspase-1 interaction proteins in normal physiological conditions and in various pathologies.

Results

We made the following important findings: (1) Caspase-1 substrates and interaction proteins are localized in various intracellular organelles including nucleus and secreted extracellularly; (2) Caspase-1 may get activated in situ in the nucleus in response to intra-nuclear danger signals; (3) Caspase-1 cleaves its substrates in exocytotic secretory pathways including exosomes to propagate inflammation to neighboring and remote cells; (4) Most of caspase-1 substrates are upregulated in coronary artery disease regardless of their subcellular localization but the majority of metabolic diseases cause no significant expression changes in caspase-1 nuclear substrates; and (5) In coronary artery disease, majority of upregulated caspase-1 extracellular substrate-related pathways are involved in induction of inflammation; and in contrast, upregulated caspase-1 nuclear substrate-related pathways are more involved in regulating cell death and chromatin regulation.

Conclusions

Our identification of novel caspase-1 trafficking sites, nuclear and extracellular inflammasomes, and extracellular caspase-1-based inflammation propagation model provides a list of targets for the future development of new therapeutics to treat cardiovascular diseases, inflammatory diseases, and inflammatory cancers.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号