首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   77篇
  2023年   7篇
  2022年   11篇
  2021年   41篇
  2020年   11篇
  2019年   17篇
  2018年   14篇
  2017年   6篇
  2016年   19篇
  2015年   55篇
  2014年   45篇
  2013年   46篇
  2012年   80篇
  2011年   57篇
  2010年   32篇
  2009年   24篇
  2008年   50篇
  2007年   34篇
  2006年   42篇
  2005年   33篇
  2004年   26篇
  2003年   30篇
  2002年   31篇
  2001年   9篇
  2000年   8篇
  1997年   7篇
  1992年   7篇
  1990年   6篇
  1989年   7篇
  1984年   7篇
  1983年   9篇
  1982年   7篇
  1981年   7篇
  1980年   9篇
  1979年   8篇
  1976年   6篇
  1975年   5篇
  1974年   7篇
  1973年   11篇
  1972年   6篇
  1971年   9篇
  1970年   8篇
  1969年   6篇
  1967年   9篇
  1961年   5篇
  1959年   6篇
  1930年   6篇
  1910年   5篇
  1909年   7篇
  1896年   5篇
  1857年   5篇
排序方式: 共有1110条查询结果,搜索用时 15 毫秒
961.
962.
Following immunization with Plasmodium yoelii sporozoites, the CD8(+) T cell population specific for the SYVPSAEQI epitope expressed in sporozoite and liver stages of this malaria parasite revealed the existence of a short term Ag presentation process that translated into a single clonal burst. Further expansion of this CD8(+) T cell population in conditions of sustained Ag exposure and additional supply of naive cells was inhibited by regulatory mechanisms that were developed as early as 24-48 h after priming. Studies using mouse models for Plasmodium or influenza virus infections revealed that this mechanism is Ag specific and is mediated by activated CD8(+) T cells that inhibit the priming of naive cells. This interference of the priming of naive cells appeared to result from limited access to Ag-presenting dendritic cells, which become disabled or are eliminated after contact with activated cells. Thus, concomitantly with the development of their effector antimicrobial capacity, CD8(+) T cells also acquire a self-regulatory role that is likely to represent one of the earliest mechanisms induced in the course of an immune response and that limits the magnitude of the early expansion of CD8(+) T lymphocytes reactive to microorganisms.  相似文献   
963.
Methylglyoxal (MG) (pyruvaldehyde) is a reactive carbonyl compound produced in glycolysis. MG can form covalent adducts on proteins resulting in advanced glycation end products that may alter protein function. Here we report that MG covalently modifies the mitochondrial permeability transition pore (PTP), a high conductance channel involved in the signal transduction of cell death processes. Incubation of isolated mitochondria with MG for a short period of time (5 min), followed by removal of excess free MG, prevented both ganglioside GD3- and Ca2+-induced PTP opening and the ensuing membrane depolarization, swelling, and cytochrome c release. Under these conditions MG did not significantly interfere with mitochondrial substrate transport, respiration, or oxidative phosphorylation. The suppression of permeability transition was reversible following extended incubation in MG-free medium. Of the 29 physiological carbonyl and dicarbonyl compounds tested only MG and its analogue glyoxal were able to specifically alter the behavior of the PTP. Using a set of arginine-containing peptides, we found that the major MG-derived arginine adduct formed, following a short time exposure to MG, was the 5-hydro-5-methylimidazol-4-one derivative. These findings demonstrate that MG rapidly modifies the PTP covalently and stabilizes the PTP in the closed conformation. This is probably due to the formation of an imidazolone adduct on an arginine residue involved in the control of PTP conformation (Linder, M. D., Morkunaite-Haimi, S., Kinnunen, P. J. K., Bernardi, P., and Eriksson, O. (2002) J. Biol. Chem. 277, 937-942). We deduce that the permeability transition constitutes a potentially important physiological target of MG.  相似文献   
964.
Bile salts (BS) have been shown to suppress the secretion of very-low-density lipoprotein-triglyceride (VLDL-TG) in rat and human hepatocytes in vitro. In the present study, we investigated whether the transhepatic BS flux affects VLDL-TG concentration and hepatic VLDL-TG secretion in vivo. In rats, the transhepatic BS flux was quantitatively manipulated by 1-week chronic bile diversion (BD), followed by intraduodenal infusion with taurocholate (TC) or saline for 6 h. In mice, the transhepatic BS flux was manipulated by a 3-week dietary supplementation with TC (0.5 wt.%) or cholestyramine (2 wt.%). In rats, BD followed by saline or TC infusion did not affect plasma triacylglycerol (TG) concentration, hepatic TG production rate or VLDL lipid composition, compared to control rats. In mice supplemented for 3 weeks with TC or cholestyramine, the transhepatic BS flux was increased by 335% and decreased by 48%, respectively, compared to controls. Among the three experimental groups of mice, an inverse relationship between transhepatic BS flux and either plasma TG concentration (R(2)=0.89) or VLDL-TG production rate (R(2)=0.87) was observed, but differences were relatively small. Present data support the concept that BS can reduce VLDL-TG concentration and inhibit hepatic TG secretion in vivo; however, this occurs only at supraphysiological transhepatic BS fluxes in mice.  相似文献   
965.
Double prodrug activation gene therapy using the Escherichia coli cytosine deaminase (CD)-herpes simplex virus type 1 thymidine kinase (HSV1-tk) fusion gene (CD/TK) with 5-fluorocytosine (5FC), ganciclovir (GCV), and radiotherapy is currently under evaluation for treatment of different tumors. We assessed the efficacy of noninvasive imaging with [124I]FIAU (2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodo-uracil) and positron emission tomography (PET) for monitoring expression of the CD/TK fusion gene. Walker-256 tumor cells were transduced with a retroviral vector bearing the CD/TK gene (W256CD/TK cells). The activity of HSV1-TK and CD subunits of the CD/TK gene product was assessed in different single cell-derived clones of W256CD/TK cells using the FIAU radiotracer accumulation assay in cells and a CD enzyme assay in cell homogenates, respectively. A linear relationship was observed between the levels of CD and HSV1-tk subunit expression in corresponding clones in vitro over a wide range of CD/TK expression levels. Several clones of W256CD/TK cells with significantly different levels of CD/TK expression were selected and used to produce multiple subcutaneous tumors in rats. PET imaging of HSV1-TK subunit activity with [124I]FIAU was performed on these animals and demonstrated that different levels of CD/TK expression in subcutaneous W256CD/TK tumors can be imaged quantitatively. CD expression in subcutaneous tumor sample homogenates was measured using a CD enzyme assay. A comparison of CD and HSV1-TK subunit enzymatic activity of the CD/TK fusion protein in vivo showed a significant correlation. Knowing this relationship, the parametric images of CD subunit activity were generated. Imaging with [124I]FIAU and PET could provide pre- and posttreatment assessments of CD/TK-based double prodrug activation in clinical gene therapy trials.  相似文献   
966.
CDK5 and its activator, p35, are expressed in mouse corneal epithelium and can be coimmunoprecipited from corneal epithelial cell lysates. Immunostaining shows CDK5 and p35 in all layers of the corneal epithelium, especially along the basal side of the basal cells. Stable transfection of corneal epithelial cells with CDK5, which increases CDK5 kinase activity by approximately 33%, also increases the number of cells adhering to fibronectin and the strength of adhesion. CDK5 kinase activity seems to be required for this effect, because the kinase inactive mutation, CDK5-T33, either reduces adhesion or has no significant effect, depending on the level of expression. Using an in vitro scrape wound in confluent cultures of stably transfected cells to examine the effect of CDK5 on cell migration, we show that reoccupation of the wound area is significantly decreased by CDK5 and increased by CDK5-T33. These findings indicate that CDK5 may be an important regulator of adhesion and migration of corneal epithelial cells.  相似文献   
967.
968.
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.  相似文献   
969.
CD4+ T cells are crucial to the development of CD8+ T cell responses against hepatocytes infected with malaria parasites. In the absence of CD4+ T cells, CD8+ T cells initiate a seemingly normal differentiation and proliferation during the first few days after immunization. However, this response fails to develop further and is reduced by more than 90%, compared to that observed in the presence of CD4+ T cells. We report here that interleukin-4 (IL-4) secreted by CD4+ T cells is essential to the full development of this CD8+ T cell response. This is the first demonstration that IL-4 is a mediator of CD4/CD8 cross-talk leading to the development of immunity against an infectious pathogen.  相似文献   
970.
Plasmodium sporozoites, the infective stage of the malaria parasite transmitted by mosquitoes, migrate through several hepatocytes before infecting a final one. Migration through hepatocytes occurs by breaching their plasma membranes, and final infection takes place with the formation of a vacuole around the sporozoite. Once in the liver, sporozoites have already reached their target cells, making migration through hepatocytes prior to infection seem unnecessary. Here we show that this migration is required for infection of hepatocytes. Migration through host cells, but not passive contact with hepatocytes, induces the exocytosis of sporozoite apical organelles, a prerequisite for infection with formation of a vacuole. Sporozoite activation induced by migration through host cells is an essential step of Plasmodium life cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号