首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   996篇
  免费   77篇
  1073篇
  2023年   7篇
  2022年   11篇
  2021年   41篇
  2020年   11篇
  2019年   17篇
  2018年   13篇
  2017年   7篇
  2016年   17篇
  2015年   53篇
  2014年   43篇
  2013年   46篇
  2012年   76篇
  2011年   55篇
  2010年   31篇
  2009年   22篇
  2008年   47篇
  2007年   34篇
  2006年   41篇
  2005年   32篇
  2004年   25篇
  2003年   26篇
  2002年   29篇
  2001年   11篇
  2000年   8篇
  1992年   5篇
  1989年   5篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   10篇
  1979年   6篇
  1977年   6篇
  1976年   5篇
  1975年   6篇
  1974年   7篇
  1973年   12篇
  1972年   6篇
  1971年   10篇
  1970年   8篇
  1969年   6篇
  1967年   9篇
  1961年   5篇
  1959年   6篇
  1937年   7篇
  1930年   6篇
  1910年   5篇
  1909年   7篇
  1896年   5篇
  1857年   5篇
排序方式: 共有1073条查询结果,搜索用时 0 毫秒
81.
Recently, the identification of Clnk, a third member of the SLP-76 family of adaptors expressed exclusively in cytokine-stimulated hemopoietic cells, has been reported by us and by others. Like SLP-76 and Blnk, Clnk was shown to act as a positive regulator of immunoreceptor signaling. Interestingly, however, it did not detectably associate with known binding partners of SLP-76, including Vav, Nck, and GADS. In contrast, it became complexed in activated T cells and myeloid cells with an as yet unknown tyrosine-phosphorylated polypeptide of approximately 92 kDa (p92). In order to understand better the function of Clnk, we sought to identify the Clnk-associated p92. Using a yeast two-hybrid screen and cotransfection experiments with Cos-1 cells, evidence was adduced that p92 is HPK-1, a serine/threonine-specific protein kinase expressed in hemopoietic cells. Further studies showed that Clnk and HPK-1 were also associated in hemopoietic cells and that their interaction was augmented by immunoreceptor stimulation. A much weaker association was detected between HPK-1 and SLP-76. Transient transfections in Jurkat T cells revealed that Clnk and HPK-1 cooperated to increase immunoreceptor-mediated activation of the interleukin 2 (IL-2) promoter. Moreover, the ability of Clnk to stimulate IL-2 promoter activity could be blocked by expression of a kinase-defective version of HPK-1. Lastly we found that in spite of the differential ability of Clnk and SLP-76 to bind cellular proteins, Clnk was apt at rescuing immunoreceptor signaling in a Jurkat T-cell variant lacking SLP-76. Taken together, these results show that Clnk physically and functionally interacts with HPK-1 in hemopoietic cells. Moreover, they suggest that Clnk is capable of functionally substituting for SLP-76 in immunoreceptor signaling, albeit by using a distinct set of intracellular effectors.  相似文献   
82.
Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD+ complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH, immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH that converts crotonyl-CoA to butyryl-CoA.  相似文献   
83.
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.  相似文献   
84.
85.
Mechanisms regulating the activation and delivery of function of Lck and Fyn are central to the generation of the most proximal signaling events emanating from the T cell antigen receptor (TcR) complex. Recent results demonstrate that lipid rafts (LR) segregate Lck and Fyn and play a fundamental role in the temporal and spatial coordination of their activation. Specifically, TcR-CD4 co-aggregation-induced Lck activation outside LR results in Lck translocation to LR where the activation of LR-resident Fyn ensues. Here we report a structure-function analysis toward characterizing the mechanism supporting Lck partitioning to LR and its capacity to activate co-localized Fyn. Using NIH 3T3 cells ectopically expressing FynT, we demonstrate that only LR-associated, kinase-active (Y505F)Lck reciprocally co-immunoprecipitates with and activates Fyn. Mutational analyses revealed a profound reduction in the formation of Lck-Fyn complexes and Fyn activation, using kinase domain mutants K273R and Y394F of (Y505F)Lck, both of which have profoundly compromised kinase activity. The only kinase-active Lck mutants tested that revealed impaired physical and enzymatic engagement with Fyn were those involving truncation of the C-terminal sequence YQPQP. Remarkably, sequential truncation of YQPQP resulted in an increasing reduction of kinase-active Lck partitioning to LR, in both fibroblasts and T cells. This in turn correlated with an ablation of the capacity of these truncates to enhance TcR-mediated interleukin-2 production. Thus, Lck-dependent Fyn activation is predicated by proximity-mediated transphosphorylation of the Fyn kinase domain, and targeting kinase-active Lck to LR is dependent on the C-terminal sequence QPQP.  相似文献   
86.

Background and Aim

Switzerland has a low post mortem organ donation rate. Here we examine variables that are associated with the consent of the deceased’s next of kin (NOK) for organ donation, which is a prerequisite for donation in Switzerland.

Methods and Analysis

During one year, we registered information from NOK of all deceased patients in Swiss intensive care units, who were approached for consent to organ donation. We collected data on patient demographics, characteristics of NOK, factors related to the request process and to the clinical setting. We analyzed the association of collected predictors with consent rate using univariable logistic regression models; predictors with p-values <0.2 were selected for a multivariable logistic regression.

Results

Of 266 NOK approached for consent, consent was given in 137 (51.5%) cases. In multivariable analysis, we found associations of consent rates with Swiss nationality (OR 3.09, 95% CI: 1.46–6.54) and German language area (OR 0.31, 95% CI: 0.14–0.73). Consent rates tended to be higher if a parent was present during the request (OR 1.76, 95% CI: 0.93–3.33) and if the request was done before brain death was formally declared (OR 1.87, 95% CI: 0.90–3.87).

Conclusion

Establishing an atmosphere of trust between the medical staff putting forward a request and the NOK, allowing sufficient time for the NOK to consider donation, and respecting personal values and cultural differences, could be of importance for increasing donation rates. Additional measures are needed to address the pronounced differences in consent rates between language regions.  相似文献   
87.
The alpha 1-adrenergic receptor has been shown to mediate the release of arachidonic acid in FRTL5 thyroid cells and MDCK kidney cells. In primary cultures of spinal cord cells, norepinephrine stimulated release of arachidonic acid (from neurons only) and turnover of inositol phospholipids (from neurons and glia) via alpha 1-adrenergic receptors. These two responses were dissociated by treatment with phorbol ester and pertussis toxin, which inhibited production of inositol phosphates with no appreciable effect on release of arachidonic acid. Extracellular calcium was required for release of arachidonic acid, but not for production of inositol phosphates. The calcium channel blockers nifedipine and verapamil inhibited release of arachidonic acid only. However, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a compound that blocks intracellular calcium release, diminished production of inositol phosphates, but had little effect on release of arachidonic acid. These results suggest that alpha 1-adrenergic receptors couple to release of arachidonic acid in primary cultures of spinal cord cells by a mechanism independent of activation of phospholipase C, possibly via the activation of phospholipase A2.  相似文献   
88.
Arylsulfatase B (arylsulfate sulfohydrolase; EC 3.1.6.1) activities in C57BL/6J, SWR/J, and A/J mouse liver approximate a 5:3:1 ratio. Each enzyme was purified to apparent homogeneity, and the properties of the three purified enzymes were compared. The purified enzyme behaved as a monomer with an apparent molecular weight of 50,000. The purified enzyme catalyzed the hydrolysis of p-nitrocatechol sulfate (pNCS), 4-methylumbelliferyl sulfate (4MUS), and chondroitin-4-sulfate (C4S) heptasaccharide. Purified SWR/J arylsulfatase B possessed a higher relative electrophoretic mobility at pH 4.0 than the A/J and C57BL/6J isozymes, and the SWR/J enzyme was more thermostable than either the C57BL/6J or the A/J enzyme. No differences were observed among the three enzymes with respect to their Michaelis constants for 4MUS and pNCS, isoelectric points, responses to inhibitors, pH optima, or electrophoretic mobilities at pH 8.3. The relative in vivo rates of synthesis of C57BL/6J, A/J, and SWR/J arylsulfatase B were comparable.  相似文献   
89.
90.
BALB/c nude (nu/nu) mice and euthymic (nu/+) littermates were treated as neonates with anti-T15 antibody and challenged at various ages with either a thymus-independent, PC-Brucella abortus (PC-BA), or thymus-dependent, PC-keyhole limpet hemocyanin (PC-KLH), form of phosphorylcholine (PC). Nu/nu mice challenged with PC-KLH received KLH-primed splenic T cells prior to immunization. Neither neonatally anti-idiotype-treated nu/+ nor nu/nu mice responded with the production of T15-positive anti-PC antibodies after challenge with either form of PC antigen. It is concluded that neither induction nor maintenance of a state of T15-specific suppression requires thymus-matured T cells. Recovery of anti-PC responsiveness in suppressed nu/+ or nu/nu mice was similar and was found to be related to the form of antigen used to elicit the response. Immunization with PC-KLH revealed a long-lasting unresponsiveness (up to 16 weeks). In contrast, immunization with PC-BA elicited a full anti-PC response as early as at 6.5 weeks of age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号