首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2631篇
  免费   238篇
  2023年   24篇
  2022年   44篇
  2021年   105篇
  2020年   47篇
  2019年   61篇
  2018年   70篇
  2017年   50篇
  2016年   84篇
  2015年   167篇
  2014年   153篇
  2013年   160篇
  2012年   234篇
  2011年   169篇
  2010年   119篇
  2009年   89篇
  2008年   142篇
  2007年   124篇
  2006年   123篇
  2005年   97篇
  2004年   87篇
  2003年   85篇
  2002年   86篇
  2001年   29篇
  2000年   21篇
  1999年   24篇
  1998年   19篇
  1997年   8篇
  1996年   13篇
  1995年   7篇
  1994年   7篇
  1992年   10篇
  1991年   13篇
  1990年   8篇
  1989年   9篇
  1986年   12篇
  1985年   11篇
  1984年   14篇
  1983年   11篇
  1982年   8篇
  1981年   11篇
  1980年   11篇
  1979年   13篇
  1976年   7篇
  1974年   10篇
  1973年   11篇
  1972年   7篇
  1971年   11篇
  1970年   9篇
  1967年   9篇
  1909年   7篇
排序方式: 共有2869条查询结果,搜索用时 359 毫秒
31.
Abstract A new sulfated, cyclic depsipeptide, called cyanopeptolin S, from Microcystis sp. was isolated from a water bloom in the Auensee/Leipzig (Germany). The depsipeptide had a relative molecular mass of 925 and contained l-arginine, l-threonine, l-isoleucine, N-methyl-l-phenylalanine, a l-glutamic acid-δ-aldehyde ring system and a sulfated d-configurated glyceric acid as a side chain. The structure was elucidated by means of two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectroscopy, Fourier transformed infrared spectroscopy and combined gas-liquid chromatography/mass spectrometry. Cyanopeptolin S inhibited trypsin with an IC50≤ 0.2 μg ml−1.  相似文献   
32.
D Julius  A Brake  L Blair  R Kunisawa  J Thorner 《Cell》1984,37(3):1075-1089
S. cerevisiae kex2 mutants are defective for the production of two biologically active secreted peptides: killer toxin and the mating pheromone, alpha-factor. Both molecules are excised from larger precursor polypeptides. In normal cells, the alpha-factor precursor is core-glycosylated and proteolytically processed intracellularly. In kex2 mutants, however, prepro-alpha-factor is not proteolytically cleaved and is secreted in a highly glycosylated form. All kex2 mutants examined (three independent alleles) lack a Zn++-sensitive membrane-associated endopeptidase with specificity for cleaving on the carboxyl side of a pair of basic residues. Absence of this activity cosegregates with the other phenotypes of a kex2 lesion in genetic crosses. The normal KEX2 gene was isolated by complementation of three of the phenotypes conferred by the kex2-1 mutation. The cloned DNA, either on a multicopy plasmid or integrated into the genome, restores both enzymatic activity in vitro and the normal pattern of proteolytic processing and glycosylation of prepro-alpha-factor in vivo. Gene dosage effects suggest that KEX2 is the structural gene for the endopeptidase.  相似文献   
33.
Calmodulin is a eukaryotic calcium binding protein which has several calcium-dependent in vitro activities. Presented in this report is a structural characterization of calmodulin from spinach leaves (Spinacia oleracea). Spinach calmodulin may be representative of higher plant calmodulins in general since calmodulin from the monocotyledon barley (Hordeum vulgare) is indistinguishable by a variety of physical, chemical, and functional criteria (Schleicher, Lukas, Watterson 1983 Plant Physiol 73: 666-670). Spinach calmodulin is homologous to bovine brain calmodulin with only 13 identified amino acid sequence differences, excluding a blocked NH2-terminal tripeptide whose sequence has not been elucidated. Two extended regions of sequence identity are in the NH2-terminal half of the molecule, while nine of the 13 identified differences are in the COOH-terminal half of the molecule. Two of the changes, a cysteine at residue 26 and a glutamine at residue 96, require a minimum of two base changes in the nucleotide codons. Both of these changes occur in the proposed calcium binding loops of the molecule. Five additional amino acid differences found in spinach calmodulin had not been observed previously in a calmodulin. As described in an accompanying report (Roberts, Burgess, Watterson 1984 Plant Physiol 75: 796-798), these limited number of amino acid sequence variations appear to result in differential effects on the activation of calmodulin-dependent enzymes by plant and vertebrate calmodulins.  相似文献   
34.
35.
Summary Stimulations or inhibitions by various agents of45Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of45Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because45Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of45Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance (40Ca), the tracer (45Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries.  相似文献   
36.
The agonist binding affinity of nicotinic acetylcholine receptor (nAChR) from Torpedocalifornica electroplax, as inferred from ability of agonist to inhibit specific curaremimetic neurotoxin binding to nAChR, is sensitive to the duration of exposure to agonist. The concentration of carbachol necessary to prevent one-half of toxin binding over a 30 min incubation with nAChR (K30) is 10 μM when toxin and carbachol are simultaneously added to membrane-bound nAChR, and 3 μM when nAChR are pretreated with carbachol for 30 min prior to the addition of toxin. These alterations in agonist affinity may be mimicked by modification of nAChR thiol groups. Affinity of nAChR for carbachol is decreased following treatment with dithiothreitol (DTT). Dithio-bis-nitrobenzoic acid treatment of DTT-reduced membranes yields K30 values of 5 μM for carbachol, while N-ethylmaleimide treatment of DTT-reduced nAChR produces nAChR with reduced affinity for carbachol, reflected in K30 values of about 400 μM. In the absence of Ca++, K30 values for carbachol binding to native and DTT-reduced nAChR are diminished 3–6 fold. These affinity alterations are not observed with d-tubocurarine (antagonist) binding to nAChR. Thus, Ca++ and the oxidation state of nAChR thiols appear to affect the affinity of nAChR for agonists (but not antagonists), and may therefore be related to agonist-mediated events in receptor activation and/or desensitization.  相似文献   
37.
It is impossible to measure the diffusion coefficient of macromolecules directly and accurately by quasi—elastic light scattering, when aggregates cannot be eliminated from the solutions to be investigated. Nevertheless, a simple method can be applied to overcome this problem in many cases. Aggregates are separated from the monomeric macromolecules by rate-zonal sedimentation in a CsCl density gradient in a transparent centrifugation tube; the monomers are then located by laser light scattering intensity measurements; photon correlation spectroscopy of the scattered light finally yields their diffusion coefficient. The viscosity of aqueous CsCl solutions at different temperatures and concentrations allows a good separation by centrifugation and a low uncertainty in the reduction of the measured diffusion coefficient to standard conditions.The application of the method to eukaryotic large ribosomal subunits is described as an example.  相似文献   
38.
Cytoplasmic ribosomes were isolated from the cryptobiotic embryos of the brine shrimp Artemia salina. Measurements of their refractive-index increments and light-scattering intensities give a value for their molecular weight of (3.4±0.2)×106.  相似文献   
39.
On integrating experimental data published previously, the following picture of the mitochondrial adenine nucleotide (AdN) translocation system is being presented: 1. The AdN translocation system serves not only to transport ATP synthesized within mitochondria into the cytosol but also to transport cytosolic ATP into the mitochondria when oxidative phosphorylation is not functioning. 2. The AdN translocator is coded for by nuclear genes and the mitochondrial protein synthesis is not involved in its formation. 3. The AdN translocation system must be preserved and functioning even in cells which could dispense with oxidative phosphorylation. It assures appropriate concentrations of intramitochondrial ATP. 4. The intramitochondrial ATP is required for normal replication of mitochondrial DNA. Tis supports the view that the mitochondrion is a self-replicating semi-autonomous organelle. 5. The appropriate concentration of ATP must be present in mitochondria to make possible cell growth or multiplication. This points to a direct or indirect role of mitochondria in the control of cell proliferation.  相似文献   
40.
Summary Spontaneous mutants (146) of Escherichia coli K-12 were selected that were resistant to inhibition of growth by 1.2 mM L-valine (Valr). The Valr isolates, containing acetohydroxy acid synthase resistant to feedback inhibition by L-valine (AHASr), were classed according to cotransduction of the mutation with leu. Several mutations resulting in an AHASr phenotype were found to be cotransducible with glyA. However, no mutations causing a Valr phenotype were linked to ilv. AHAS activity was more closely examined in representatives of three classes of mutants with Valr linked to leu, labeled ilv-660, ilv-661, and ilv-662. The ilvE503 allele in E. coli K-12, known to cause a two- to three-fold derepression of AHAS, was found to affect regulation of synthesis of both valine-sensitive AHAS (AHASs) and AHASr in the mutants containing ilv-660 and ilv-661, whereas it affected repression of AHASs, only, in the mutant containing ilv-662. Further, both AHASs and AHASr in the ilv-661 mutant were repressed by valine, whereas valine did not repress AHASr synthesis in the strain carrying ilv-660 and only partially repressed AHASr in the strain carrying ilv-662. Unexpectedly, AHASr synthesis in strains carrying ilv-660 or ilv-662 was repressible by leucine. The ilv-660 locus appears to be similar in position to ilvH and encodes a product that confers valine-sensitivity upon AHAS activity in the wild-type E. coli K-12. The ilv-660 and ilv-662 loci may normally encode products that influence both the feedback sensitivity of AHAS and control of AHAS biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号