首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   995篇
  免费   80篇
  1075篇
  2023年   7篇
  2022年   11篇
  2021年   41篇
  2020年   11篇
  2019年   17篇
  2018年   14篇
  2017年   7篇
  2016年   17篇
  2015年   53篇
  2014年   45篇
  2013年   46篇
  2012年   77篇
  2011年   56篇
  2010年   31篇
  2009年   22篇
  2008年   47篇
  2007年   34篇
  2006年   41篇
  2005年   31篇
  2004年   24篇
  2003年   26篇
  2002年   32篇
  2001年   9篇
  2000年   8篇
  1999年   6篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1980年   9篇
  1979年   8篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   7篇
  1973年   13篇
  1972年   7篇
  1971年   10篇
  1970年   8篇
  1969年   6篇
  1968年   5篇
  1967年   9篇
  1961年   5篇
  1959年   6篇
  1930年   6篇
  1910年   5篇
  1909年   7篇
  1896年   5篇
  1857年   5篇
排序方式: 共有1075条查询结果,搜索用时 15 毫秒
91.
Electron bifurcation is a fundamental strategy of energy coupling originally discovered in the Q-cycle of many organisms. Recently a flavin-based electron bifurcation has been detected in anaerobes, first in clostridia and later in acetogens and methanogens. It enables anaerobic bacteria and archaea to reduce the low-potential [4Fe-4S] clusters of ferredoxin, which increases the efficiency of the substrate level and electron transport phosphorylations. Here we characterize the bifurcating electron transferring flavoprotein (EtfAf) and butyryl-CoA dehydrogenase (BcdAf) of Acidaminococcus fermentans, which couple the exergonic reduction of crotonyl-CoA to butyryl-CoA to the endergonic reduction of ferredoxin both with NADH. EtfAf contains one FAD (α-FAD) in subunit α and a second FAD (β-FAD) in subunit β. The distance between the two isoalloxazine rings is 18 Å. The EtfAf-NAD+ complex structure revealed β-FAD as acceptor of the hydride of NADH. The formed β-FADH is considered as the bifurcating electron donor. As a result of a domain movement, α-FAD is able to approach β-FADH by about 4 Å and to take up one electron yielding a stable anionic semiquinone, α-FAD, which donates this electron further to Dh-FAD of BcdAf after a second domain movement. The remaining non-stabilized neutral semiquinone, β-FADH, immediately reduces ferredoxin. Repetition of this process affords a second reduced ferredoxin and Dh-FADH that converts crotonyl-CoA to butyryl-CoA.  相似文献   
92.
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.  相似文献   
93.
94.
Mechanisms regulating the activation and delivery of function of Lck and Fyn are central to the generation of the most proximal signaling events emanating from the T cell antigen receptor (TcR) complex. Recent results demonstrate that lipid rafts (LR) segregate Lck and Fyn and play a fundamental role in the temporal and spatial coordination of their activation. Specifically, TcR-CD4 co-aggregation-induced Lck activation outside LR results in Lck translocation to LR where the activation of LR-resident Fyn ensues. Here we report a structure-function analysis toward characterizing the mechanism supporting Lck partitioning to LR and its capacity to activate co-localized Fyn. Using NIH 3T3 cells ectopically expressing FynT, we demonstrate that only LR-associated, kinase-active (Y505F)Lck reciprocally co-immunoprecipitates with and activates Fyn. Mutational analyses revealed a profound reduction in the formation of Lck-Fyn complexes and Fyn activation, using kinase domain mutants K273R and Y394F of (Y505F)Lck, both of which have profoundly compromised kinase activity. The only kinase-active Lck mutants tested that revealed impaired physical and enzymatic engagement with Fyn were those involving truncation of the C-terminal sequence YQPQP. Remarkably, sequential truncation of YQPQP resulted in an increasing reduction of kinase-active Lck partitioning to LR, in both fibroblasts and T cells. This in turn correlated with an ablation of the capacity of these truncates to enhance TcR-mediated interleukin-2 production. Thus, Lck-dependent Fyn activation is predicated by proximity-mediated transphosphorylation of the Fyn kinase domain, and targeting kinase-active Lck to LR is dependent on the C-terminal sequence QPQP.  相似文献   
95.

Background and Aim

Switzerland has a low post mortem organ donation rate. Here we examine variables that are associated with the consent of the deceased’s next of kin (NOK) for organ donation, which is a prerequisite for donation in Switzerland.

Methods and Analysis

During one year, we registered information from NOK of all deceased patients in Swiss intensive care units, who were approached for consent to organ donation. We collected data on patient demographics, characteristics of NOK, factors related to the request process and to the clinical setting. We analyzed the association of collected predictors with consent rate using univariable logistic regression models; predictors with p-values <0.2 were selected for a multivariable logistic regression.

Results

Of 266 NOK approached for consent, consent was given in 137 (51.5%) cases. In multivariable analysis, we found associations of consent rates with Swiss nationality (OR 3.09, 95% CI: 1.46–6.54) and German language area (OR 0.31, 95% CI: 0.14–0.73). Consent rates tended to be higher if a parent was present during the request (OR 1.76, 95% CI: 0.93–3.33) and if the request was done before brain death was formally declared (OR 1.87, 95% CI: 0.90–3.87).

Conclusion

Establishing an atmosphere of trust between the medical staff putting forward a request and the NOK, allowing sufficient time for the NOK to consider donation, and respecting personal values and cultural differences, could be of importance for increasing donation rates. Additional measures are needed to address the pronounced differences in consent rates between language regions.  相似文献   
96.
The alpha 1-adrenergic receptor has been shown to mediate the release of arachidonic acid in FRTL5 thyroid cells and MDCK kidney cells. In primary cultures of spinal cord cells, norepinephrine stimulated release of arachidonic acid (from neurons only) and turnover of inositol phospholipids (from neurons and glia) via alpha 1-adrenergic receptors. These two responses were dissociated by treatment with phorbol ester and pertussis toxin, which inhibited production of inositol phosphates with no appreciable effect on release of arachidonic acid. Extracellular calcium was required for release of arachidonic acid, but not for production of inositol phosphates. The calcium channel blockers nifedipine and verapamil inhibited release of arachidonic acid only. However, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a compound that blocks intracellular calcium release, diminished production of inositol phosphates, but had little effect on release of arachidonic acid. These results suggest that alpha 1-adrenergic receptors couple to release of arachidonic acid in primary cultures of spinal cord cells by a mechanism independent of activation of phospholipase C, possibly via the activation of phospholipase A2.  相似文献   
97.
Arylsulfatase B (arylsulfate sulfohydrolase; EC 3.1.6.1) activities in C57BL/6J, SWR/J, and A/J mouse liver approximate a 5:3:1 ratio. Each enzyme was purified to apparent homogeneity, and the properties of the three purified enzymes were compared. The purified enzyme behaved as a monomer with an apparent molecular weight of 50,000. The purified enzyme catalyzed the hydrolysis of p-nitrocatechol sulfate (pNCS), 4-methylumbelliferyl sulfate (4MUS), and chondroitin-4-sulfate (C4S) heptasaccharide. Purified SWR/J arylsulfatase B possessed a higher relative electrophoretic mobility at pH 4.0 than the A/J and C57BL/6J isozymes, and the SWR/J enzyme was more thermostable than either the C57BL/6J or the A/J enzyme. No differences were observed among the three enzymes with respect to their Michaelis constants for 4MUS and pNCS, isoelectric points, responses to inhibitors, pH optima, or electrophoretic mobilities at pH 8.3. The relative in vivo rates of synthesis of C57BL/6J, A/J, and SWR/J arylsulfatase B were comparable.  相似文献   
98.
99.
BALB/c nude (nu/nu) mice and euthymic (nu/+) littermates were treated as neonates with anti-T15 antibody and challenged at various ages with either a thymus-independent, PC-Brucella abortus (PC-BA), or thymus-dependent, PC-keyhole limpet hemocyanin (PC-KLH), form of phosphorylcholine (PC). Nu/nu mice challenged with PC-KLH received KLH-primed splenic T cells prior to immunization. Neither neonatally anti-idiotype-treated nu/+ nor nu/nu mice responded with the production of T15-positive anti-PC antibodies after challenge with either form of PC antigen. It is concluded that neither induction nor maintenance of a state of T15-specific suppression requires thymus-matured T cells. Recovery of anti-PC responsiveness in suppressed nu/+ or nu/nu mice was similar and was found to be related to the form of antigen used to elicit the response. Immunization with PC-KLH revealed a long-lasting unresponsiveness (up to 16 weeks). In contrast, immunization with PC-BA elicited a full anti-PC response as early as at 6.5 weeks of age.  相似文献   
100.
Despite extensive phylogenetic analysis of small subunit ribosomal RNA (SSUrRNA) genes, the deep-level relationships among kinetoplastids remain poorly understood, limiting our grasp of their evolutionary history, especially the origins of their bizarre mitochondrial genome organizations. In this study we examine the SSUrRNA data in the light of a new marker--cytoplasmic heat shock protein 90 (hsp90) sequences. Our phylogenetic analyses divide kinetoplastids into four main clades. Clades 1-3 include the various bodonid kinetoplastids. Trypanosomatids comprise the fourth clade. SSUrRNA analyses give vastly different and poorly supported positions for the root of the kinetoplastid tree, depending on the out-group and analysis method. This is probably due to the extraordinary length of the branch between kinetoplastids and any out-group. In contrast, almost all hsp90 analyses place the root between clade 1 (including Dimastigella, Rhynchomonas, several Bodo spp., and probably Rhynchobodo) and all other kinetoplastids. Maximum likelihood and maximum likelihood distance analyses of hsp90 protein and second codon-position nucleotides place trypanosomatids adjacent to Bodo saltans and Bodo cf. uncinatus (clade 3), as (weakly) do SSUrRNA analyses. Hsp90 first codon- plus second codon-position nucleotide analyses return a slightly different topology. We show that this may be an artifact caused, in part, by the different evolutionary behavior of first- and second-codon positions. This study provides the most robust evidence to date that trypanosomatids are descended from within bodonids and that B. saltans is a close relative of trypanosomatids. A total reevaluation of the high-level systematics within kinetoplastids is needed. We confirm that the interlocking network organization of kinetoplast DNA seen in trypanosomatids is a derived condition within kinetoplastids but suggest that open-conformation minicircles may have arisen early in kinetoplastid evolution. Further understanding of the evolution of kinetoplast structure and RNA editing is hampered by a paucity of data from basal (i.e., clade 1) bodonids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号