首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
  86篇
  2022年   4篇
  2021年   5篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   7篇
  2015年   9篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   5篇
  2009年   3篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   2篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1984年   1篇
  1977年   1篇
  1974年   2篇
  1970年   1篇
  1960年   1篇
排序方式: 共有86条查询结果,搜索用时 6 毫秒
81.
Although molecular gradients have long been postulated to play a role in the development of topographic projections in the nervous system, relatively little is known about how axons evaluate gradients. Do growth cones respond to concentration or to slope? Do they react suddenly or gradually? Is there adaptation? In the developing retinotectal system, temporal retinal ganglion cell axons have previously been shown to avoid repellent cell-surface activities distributed in gradients across the optic tectum. We confronted temporal retinal axons with precisely formed striped linear gradients of repellent tectal membranes and of two candidate repellent molecules, ephrin-A2 and -A5. Axons entered gradient stripes independently of their slope and extended unhindered in the uphill direction until they suddenly avoided an apparent threshold concentration of repellent material that was independent of slope. This critical concentration was similar in both linear and nonlinear gradients, and hence independent of gradient shape. When gradients of identical slope were formed on different basal levels of repellent material, axons grew uphill for a fixed increment of concentration, possibly measured from the lowest point of the gradient, rather than up to a fixed absolute concentration. The speed of growth cones was not affected by repellent unstriped gradients below the critical concentration level. Similar results were found with membranes from cell lines stably transfected with either ephrin-A5 or ephrin-A2, two previously identified growth cone repellent cell-surface proteins. These data suggest that growth cones or axons can integrate guidance information over large distances, probably by a combined memory and adaptation mechanism. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 541–562, 1998  相似文献   
82.
Tyrosine-rich conopeptides affect voltage-gated K+ channels   总被引:1,自引:0,他引:1  
Two venom peptides, CPY-Pl1 (EU000528) and CPY-Fe1 (EU000529), characterized from the vermivorous marine snails Conus planorbis and Conus ferrugineus, define a new class of conopeptides, the conopeptide Y (CPY) family. The peptides have no disulfide cross-links and are 30 amino acids long; the high content of tyrosine is unprecedented for any native gene product. The CPY peptides were chemically synthesized and shown to be biologically active upon injection into both mice and Caenorhabditis elegans; activity on mammalian Kv1 channel isoforms was demonstrated using an oocyte heterologous expression system, and selectivity for Kv1.6 was found. NMR spectroscopy revealed that the peptides were unstructured in aqueous solution; however, a helical region including residues 12-18 for one peptide, CPY-Pl1, formed in trifluoroethanol buffer. Clones obtained from cDNA of both species encoded prepropeptide precursors that shared a unique signal sequence, indicating that these peptides are encoded by a novel gene family. This is the first report of tyrosine-rich bioactive peptides in Conus venom.  相似文献   
83.
Conkunitzin-S1 (Conk-S1) is a 60-residue neurotoxin from the venom of the cone snail Conus striatus that interacts with voltage-gated potassium channels. Conk-S1 shares sequence homology with Kunitz-type proteins but contains only two out of the three highly conserved cysteine bridges, which are typically found in these small, basic protein modules. In this study the three-dimensional structure of Conk-S1 has been solved by multidimensional NMR spectroscopy. The solution structure of recombinant Conk-S1 shows that a Kunitz fold is present, even though one of the highly conserved disulfide cross-links is missing. Introduction of a third, homologous disulfide bond into Conk-S1 results in a functional toxin with similar affinity for Shaker potassium channels. The affinity of Conk-S1 can be enhanced by a pore mutation within the Shaker channel pore indicating an interaction of Conk-S1 with the vestibule of potassium channels.  相似文献   
84.
85.
The lipase ofMucor javanicus (nowM. circinelloides) entrapped in silica matrix by the sol-gel method esterified primary and secondary alcohols with conversions ranging from 30 to 35% and 10 to 15%, respectively. Loss in activity of the preparations after incubation at 100°C for 1 h with petroleum ether, dodecane, 1-heptanol or oleyl alcohol was about half of that observed for the native lipase.  相似文献   
86.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号