首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5370篇
  免费   383篇
  国内免费   2篇
  5755篇
  2023年   32篇
  2022年   56篇
  2021年   111篇
  2020年   77篇
  2019年   73篇
  2018年   104篇
  2017年   85篇
  2016年   147篇
  2015年   232篇
  2014年   262篇
  2013年   327篇
  2012年   433篇
  2011年   408篇
  2010年   255篇
  2009年   262篇
  2008年   351篇
  2007年   356篇
  2006年   327篇
  2005年   286篇
  2004年   266篇
  2003年   254篇
  2002年   226篇
  2001年   44篇
  2000年   47篇
  1999年   66篇
  1998年   58篇
  1997年   53篇
  1996年   35篇
  1995年   41篇
  1994年   27篇
  1993年   49篇
  1992年   29篇
  1991年   45篇
  1990年   27篇
  1989年   17篇
  1988年   22篇
  1987年   30篇
  1986年   16篇
  1985年   18篇
  1984年   14篇
  1983年   14篇
  1982年   17篇
  1981年   13篇
  1980年   10篇
  1979年   10篇
  1978年   20篇
  1977年   7篇
  1976年   11篇
  1975年   7篇
  1974年   14篇
排序方式: 共有5755条查询结果,搜索用时 0 毫秒
81.
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.  相似文献   
82.
83.
Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.  相似文献   
84.
The initial rate of net glycerol release in norepinephrine-stimulated adipose tissue fragments was inhibited (40-78%) by procaine-HCl (1-5mM), whereas basal (unstimulated) lipolysis was unaffected. A dose-related inhibition of norepinephrine-induced lipolysis by procaine-HCl (0.1-1 mM) also occurred in adipocytes. Procaine-induced antilipolysis was associated with an augmented rather than a reduced hormone-stimulated increment in intracellular cyclic AMP. The dissociation of lipolysis from cyclic AMP accumulation has been termed the uncoupling effect of procaine. This effect of procaine was employed to define the precise mechanism of action of the antilipolytic drug clofibrate (Atromid-S) which inhibits lipolysis by reducing cyclic AMP. A reduction in cyclic AMP by clofibrate was demonstrated in norepinephrine-stimulated cells exposed to procaine (uncoupled system). Thus, the inhibitory effect of clofibrate on cyclic AMP could not be attributed to accumulation of products of lipolysis. Because neither procaine-HCl nor clofibrate had any effect on the low Km 3':5'-cyclic-AMP phosphodiesterase (EC 3.1.4.17) activity in hormone stimulated cells, the clofibrate-induced reduction in cyclic AMP was attributed to its direct action on adipocyte adenylate cyclase.  相似文献   
85.
The water-splitting and oxygen-evolving (OE) reaction is carried out by a large multisubunit protein complex, Photosystem II (PSII), that has two distinct regions: a membrane intrinsic-region that includes most of the PSII subunits and a lumenal extrinsic-region that is in close association to the manganese catalytic center. The recently determined PSII 3D structures from cyanobacteria provide a considerable amount of new knowledge about the OE architecture (K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science 303 (2004) 1831-1838; B. Loll, J. Kern, W. Saenger, A. Zouni, J. Biesiadka, Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II, Nature 438 (2005) 1040-1044). Most of the intrinsic core PSII polypeptides have been well conserved through evolution from ancient cyanobacteria to modern plants, keeping the essence of PSII light driven reactions from prokaryotes to eukaryotes; but what is striking is the large number of changes that have occurred in the oxygen-evolving extrinsic proteins (OEEp) associated to PSII lumenal side. For unknown reasons plant PSII has required the "invention" of three OEEps: PsbP (23 kDa), PsbQ (16 kDa) and PsbR (10 kDa); associated to the ubiquitous OEEp PsbO (33 kDa). This set of proteins seems to be required in plants for the full activity and stability of the OE center in vivo, but their specific function is not clear. In this paper, bioinformatics and functional data show that the OEEps present in plants and green algae are very distinct from their prokaryotic counterparts. Moreover, clear differences are found for PsbQ from higher plants and green algae; and a relationship has been found between PsbR and the Mn cluster.  相似文献   
86.
Class III peroxidases (Prxs) are plant enzymes capable of using H(2)O(2) to oxidize a range of plant secondary metabolites, notably phenolic compounds. These enzymes are localized in the cell wall or in the vacuole, which is a target for secondary metabolite accumulation, but very little is known about the function of vacuolar Prxs. Here, the physiological role of the main leaf vacuolar Prx of the medicinal plant Catharanthus roseus, CrPrx1, was further investigated namely by studying its capacity to oxidize co-localized phenolic substrates at the expense of H(2)O(2). LC-PAD-MS analysis of the phenols from isolated leaf vacuoles detected the presence of three caffeoylquinic acids and four flavonoids in this organelle. These phenols or similar compounds were shown to be good CrPrx1 substrates, and the CrPrx1-mediated oxidation of 5-O-caffeoylquinic acid was shown to form a co-operative regenerating cycle with ascorbic acid. Interestingly, more than 90% of total leaf Prx activity was localized in the vacuoles, associated to discrete spots of the tonoplast. Prx activity inside the vacuoles was estimated to be 1809 nkat ml(-1), which, together with the determined concentrations for the putative vacuolar phenolic substrates, indicate a very high H(2)O(2) scavenging capacity, up to 9 mM s(-1). Accordingly, high light conditions, known to increase H(2)O(2) production, induced both phenols and Prx levels. Therefore, it is proposed that the vacuolar couple Prx/secondary metabolites represent an important sink/buffer of H(2)O(2) in green plant cells.  相似文献   
87.
Cytoskeleton proteins are substrates for proteases and further apoptotic death. We evaluated the participation of cytoskeleton in morphological changes during cell death induced by two apoptotic conditions, potassium deprivation (K5) and staurosporine, in cerebellar granule neurons (CGC). We found that K5 induced somatic damage, but neurites were relatively preserved, which corresponded to the reorganization of actin and α-tubulin in neurites. Staurosporine (STS) induced an early alteration of neurites with reorganization of cytoskeleton proteins in somas. Caspase inhibitor ZVAD totally inhibited STS-induced α-tubulin reorganization and partially blocked STS-induced actin reorganization. α-tubulin and actin reorganization induced by K5 was affected by ZVAD. Calpain inhibitor (IC1) did not affect α-tubulin or actin reorganization induced by STS, K5 or ionomycin. Neither ZVAD, nor IC1 changed α-tubulin or actin levels upon K5 treatment. STS increased α-tubulin and actin levels, but neither ZVAD nor IC1 changed α-tubulin levels upon STS treatment. In contrast, ZVAD reduced the STS-induced increase of actin. These results suggest that CGC cytoskeleton proteins undergo a differential expression and reorganization depending on the apoptotic condition.  相似文献   
88.
We studied the dispersion patterns of the exotic endoparasitoid, Diachasmimorpha longicaudata (Ahsmed) (Hymenoptera: Braconidae), in 1999 (summer) and in 2000 (winter) in a citrus orchard in southeast Brazil. Different population densities of D. longicaudata were released in the centre of the orchard, and their dispersion was determined by using yellow, sticky, rectangular traps, placed in various distances and heights around the release point. Our results suggest that during summer, climatic conditions did not affect dispersion. However, in winter, dispersion rates were positively affected by temperature, and negatively by rainfall. Both estimated dispersal distance and surface were higher in summer than in winter for all release densities. Dispersion peaked at 2000 parasitoids ha?1 in summer and 8000 parasitoids ha?1 in winter. The importance of our results for the biological control of fruit flies by augmented or innoculative releases of D. longicaudata in southeast Brazil is discussed.  相似文献   
89.
Summary During a seven-fold increase in length the content of the coleoptile in photoreversible phytochrome increased four-fold and that of the primary leaf nine-fold. The phytochrome content, during growth, expressed on a fresh- or dry-weight basis did not vary greatly for either organ. Phytochrome per mg dry weight (OD730/mg=0.5) was nearly the same in the leaf as in the coleoptile. Coleoptiles studied had a constant DNA content of 4.1 g per organ. DNA content of the leaf increased with age. Phytochrome per DNA was much higher in the coleoptile than in the primary leaf and increased with growth in each of these organs. Thus, there was not a constant amount of phytochrome per cell in either tissue with increasing age and there was not the same amount of phytochrome per cell in the coleoptile as in the primary leaf at any age.This work was supported in part by U.S. Atomic Energy Commission Contract No. AT (30-I)2373.  相似文献   
90.
Comparison of the three-dimensional structure of hyperthermophilic and mesophilic β-glycosidases shows differences in secondary structure composition. The enzymes from hyperthermophilic archaea have a significantly larger number of β-strands arranged in supernumerary β-sheets compared to mesophilic enzymes from bacteria and other organisms. Amino acid replacements designed to alter the structure of the supernumerary β-strands were introduced by site directed mutagenesis into the sequence encoding the β-glycosidase from Sulfolobus solfataricus. Most of the replacements caused almost complete loss of activity but some yielded enzyme variants whose activities were affected specifically at higher temperatures. Far-UV CD spectra recorded as a function of temperature for both wild type β-glycosidase and mutant V349G, one of the mutants with reduced activity at higher temperatures, were similar, showing that the protein structure of the mutant was stable at the highest temperatures assayed. The properties of mutant V349G show a difference between thermostability (stability of the protein structure at high temperatures) and thermophilicity (optimal activity at high temperatures).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号