首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1331篇
  免费   159篇
  2022年   12篇
  2021年   21篇
  2020年   31篇
  2019年   26篇
  2018年   33篇
  2017年   19篇
  2016年   46篇
  2015年   66篇
  2014年   67篇
  2013年   74篇
  2012年   99篇
  2011年   76篇
  2010年   60篇
  2009年   61篇
  2008年   66篇
  2007年   73篇
  2006年   65篇
  2005年   45篇
  2004年   58篇
  2003年   43篇
  2002年   45篇
  2001年   54篇
  2000年   43篇
  1999年   41篇
  1998年   13篇
  1997年   12篇
  1996年   15篇
  1995年   15篇
  1994年   14篇
  1993年   7篇
  1992年   27篇
  1991年   16篇
  1990年   21篇
  1989年   17篇
  1988年   19篇
  1987年   12篇
  1986年   19篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1981年   7篇
  1980年   3篇
  1978年   6篇
  1977年   2篇
  1976年   4篇
  1974年   4篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1967年   2篇
排序方式: 共有1490条查询结果,搜索用时 15 毫秒
991.
Euphorbia pedroi is a narrow endemic species with three known populations located in coastal areas of western Portugal. This study focused on the reproductive biology of this species from flowering to dispersal, aiming to identify the factors causing decrease in seed production potential and to assess the spatio-temporal patterns of seed production at the individual and population levels. The abortion of reproductive structures, particularly seeds, represented a major fraction of losses in the potential seed production of E. pedroi. Moth larvae destroyed a variable proportion of cyathia in a large number of plants from the two populations regardless of their degree of isolation. Furthermore, generalist and specialist pre-dispersal seed predators were responsible for temporally variable seed losses unrelated with variables indicative of plant size and fecundity, and showing no consistency at the individual level. Specialist seed-wasps inflicted the highest losses to E. pedroi and their impact was intimately associated with the magnitude of yearly variation in seed production. This finding highlights the role of the inter-annual variation in seed production as a key feature in this plant-seed predator system. The effect of the two groups of seed predators on the reproductive output of E. pedroi was additive and those insects do not seem to exert an important selective pressure on the traits studied. The proportion of intact seeds produced by E. pedroi differed between locations, but not between individuals within each population, highlighting the major contribution of larger plants to the seed pool.  相似文献   
992.
Until recently, bacterial species that inhabit the human vagina have been primarily studied using organism-centric approaches. Understanding how these bacterial species interact with each other and the host vaginal epithelium is essential for a more complete understanding of vaginal health. Molecular approaches have already led to the identification of uncultivated bacterial taxa associated with bacterial vaginosis. Here, we review recent studies of the vaginal microbiome and discuss how culture-independent approaches, such as applications of next-generation sequencing, are advancing the field and shifting our understanding of how vaginal health is defined. This work may lead to improved diagnostic tools and treatments for women who suffer from, or are at risk for, vaginal imbalances, pregnancy complications, and sexually acquired infections. These approaches may also transform our understanding of how host genetic factors, physiological conditions (e.g., menopause), and environmental exposures (e.g., smoking, antibiotic usage) influence the vaginal microbiome.  相似文献   
993.
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.  相似文献   
994.
995.
996.
ABSTRACT: BACKGROUND: Although the release of cardiac biomarkers after percutaneous (PCI) or surgical revascularization (CABG) is common, its prognostic significance is not known. Questions remain about the mechanisms and degree of correlation between the release, the volume of myocardial tissue loss, and the long-term significance. Delayed-enhancement of cardiac magnetic resonance (CMR) consistently quantifies areas of irreversible myocardial injury. To investigate the quantitative relationship between irreversible injury and cardiac biomarkers, we will evaluate the extent of irreversible injury in patients undergoing PCI and CABG and relate it to postprocedural modifications in cardiac biomarkers and long-term prognosis. METHODS: The study will include 150 patients with multivessel coronary artery disease (CAD) with left ventricle ejection fraction (LVEF) and a formal indication for CABG; 50 patients will undergo CABG with cardiopulmonary bypass (CPB); 50 patients with the same arterial and ventricular condition indicated for myocardial revascularization will undergo CABG without CPB; and another 50 patients with CAD and preserved ventricular function will undergo PCI using stents. All patients will undergo CMR before and after surgery or PCI. We will also evaluate the release of cardiac markers of necrosis immediately before and after each procedure. Primary outcome considered is overall death in a 5-year follow-up. Secondary outcomes are levels of CK-MB isoenzyme and I-Troponin in association with presence of myocardial fibrosis and systolic left ventricle dysfunction assessed by CMR. DISCUSSION: The MASS-V Trial aims to establish reliable values for parameters of enzyme markers of myocardial necrosis in the absence of manifest myocardial infarction after mechanical interventions. The establishments of these indices have diagnostic value and clinical prognosis and therefore require relevant and different therapeutic measures. In daily practice, the inappropriate use of these necrosis markers has led to misdiagnosis and therefore wrong treatment. The appearance of a more sensitive tool such as CMR provides an unprecedented diagnostic accuracy of myocardial damage when correlated with necrosis enzyme markers. We aim to correlate laboratory data with imaging, thereby establishing more refined data on the presence or absence of irreversible myocardial injury after the procedure, either percutaneous or surgical, and this, with or without the use of cardiopulmonary bypass.  相似文献   
997.
Recognition of microbe-associated molecular patterns (MAMPs) leads to the generation of MAMP-triggered immunity (MTI), which restricts the invasion and propagation of potentially infectious microbes. It has been described that the perception of different bacterial and fungal MAMPs causes the repression of flavonoid induction upon light stress or sucrose application. However, the functional significance of this MTI-associated signaling output remains unknown. In Arabidopsis (Arabidopsis thaliana), FLAGELLIN-SENSING2 (FLS2) and EF-TU RECEPTOR act as the pattern recognition receptors for the bacterial MAMP epitopes flg22 (of flagellin) and elf18 (of elongation factor [EF]-Tu), respectively. Here, we reveal that reactive oxygen species spiking and callose deposition are dispensable for the repression of flavonoid accumulation by both pattern recognition receptors. Importantly, FLS2-triggered activation of PATHOGENESIS-RELATED (PR) genes and bacterial basal defenses are enhanced in transparent testa4 plants that are devoid of flavonoids, providing evidence for a functional contribution of flavonoid repression to MTI. Moreover, we identify nine small molecules, of which eight are structurally unrelated, that derepress flavonoid accumulation in the presence of flg22. These compounds allowed us to dissect the FLS2 pathway. Remarkably, one of the identified compounds uncouples flavonoid repression and PR gene activation from the activation of reactive oxygen species, mitogen-activated protein kinases, and callose deposition, corroborating a close link between the former two outputs. Together, our data imply a model in which MAMP-induced repression of flavonoid accumulation serves a role in removing the inherent inhibitory action of flavonoids on an MTI signaling branch.  相似文献   
998.
Serum Amyloid A3 (SAA3) protein is a member of a complex group of acute phase and constitutive proteins which have been related to several immune functions. Bovine milk SAA3 (M-SAA3) has been described to have a unique N-terminal TFLK motif responsible for up regulating mucin expression in the intestine lumen and therefore a protective gastrointestinal role. cDNA sequences encoding the protein goat M-SAA3 were successfully cloned from milk, mammary gland tissue and liver, expressed despite observed toxicity and purified as a soluble protein. Sequence analyses of the milk and liver derived forms revealed a non mammary-restricted common N-terminal TFLR motif, unlike that described for bovine M-SAA3. Serum derived forms of SAA have been described to opsonize Gram-negative bacteria facilitating their phagocytosis by circulating macrophages or intestinal epithelial cells. However, no reports about a possible opsonic mechanism of the SAA3 isoforms have been described. Recombinant protein but not peptides encompassing the TFLR region increased blood and milk macrophage interaction and uptake of bacteria reported as number of bacteria per 100 macrophages and percentage of macrophages containing one or more bacteria. gMSAA3-derived peptides did not show any effect on phagocytosis. This would indicate that the TFLK-like region responsible for the up-regulation of mucins in the intestine is not the functional part of g-MSAA3 in promoting macrophage phagocytosis.  相似文献   
999.
Intracellular pH must be kept close to neutrality to be compatible with cellular functions, but the mechanisms of pH homeostasis and the responses to intracellular acidification are mostly unknown. In the plant Arabidopsis thaliana, we found that intracellular acid stress generated by weak organic acids at normal external pH induces expression of several chaperone genes, including ROF2, which encodes a peptidyl‐prolyl cis‐trans isomerase of the FK506‐binding protein class. Loss of function of ROF2, and especially double mutation of ROF2 and the closely related gene ROF1, results in acid sensitivity. Over‐expression of ROF2 confers tolerance to intracellular acidification by increasing proton extrusion from cells. The activation of the plasma membrane proton pump (H+‐ATPase) is indirect: over‐expression of ROF2 activates K+ uptake, causing depolarization of the plasma membrane, which activates the electrogenic H+ pump. The depolarization of ROF2 over‐expressing plants explains their tolerance to toxic cations such as lithium, norspermidine and hygromycin B, whose uptake is driven by the membrane potential. As ROF2 induction and intracellular acidification are common consequences of many stresses, this mechanism of pH homeostasis may be of general importance for stress tolerance.  相似文献   
1000.
Optimization of aqueous solutions of the integral membrane protein (IMP) OmpW for NMR structure determination has been monitored with micro-coil NMR, which enables the acquisition of NMR spectra using only micrograms of protein and detergent. The detergent 30-Fos (2-undecylphosphocholine) was found to yield the best 2D [15N, 1H]-TROSY correlation NMR spectra of [2H, 15N]-labeled OmpW. For the OmpW structure determination we then optimized the 30-Fos concentration, the sample temperature and long-time stability, and the deuteration level of the protein. Some emerging guidelines for reconstitution of ??-barrel integral membrane proteins in structural biology are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号