排序方式: 共有49条查询结果,搜索用时 15 毫秒
11.
Silva JA Ferrucci DL Peroni LA Abrahão PG Salamene AF Rossa-Junior C Carvalho HF Stach-Machado DR 《Journal of cellular physiology》2012,227(6):2441-2450
Molecular mechanisms responsible for periodontal disease (PD) and its worsening in type 1 Diabetes Mellitus (DM1) remain unknown. Cytokine profile and expression levels of collagenases, Mmp14, and tissue inhibitors were determined, as were the numbers of neutrophils and macrophages in combined streptozotocin-induced DM1 and ligature-induced PD models. Increased IL-23 (80-fold) and Mmp8 expression (25-fold) was found in DM1. Ligature resulted in an IL-1β/IL-6 profile, increased expression of Mmp8, Mmp13, and Mmp14 (but not Mmp1), and transient expression of Timp1 and Reck in non-diabetics. PD in DM1 involved IL-1β (but not IL-6) and IL-23/IL-17, reduced IL-6 and IL-10, sustained Mmp8 and Mmp14, increased Mmp13 and reduced Reck expression in association with 20-fold higher counts of neutrophils and macrophages. IL-23 and Mmp8 expression are hallmarks of DM1. In association with the IL-1/IL-6 (Th1) response in PD, one found a secondary IL-17 (Th17) pathway in non-diabetic rats. Low IL-6/TNF-α suggest that the Th1 response was compromised in DM1, while IL-17 indicates a prevalence of the Th17 pathway, resulting in high neutrophil recruitment. Mmp8, Mmp13, and Mmp14 expression seems important in the tissue destruction during PD in DM1. PD-associated IL-1/IL-6 (Th1), IL-10, and Reck expression are associated with the acute-to-chronic inflammation transition, which is lost in DM1. In conclusion, IL-23/IL-17 are associated with the PD progression in DM1. 相似文献
12.
Macauley MS Chan J Zandberg WF He Y Whitworth GE Stubbs KA Yuzwa SA Bennet AJ Varki A Davies GJ Vocadlo DJ 《The Journal of biological chemistry》2012,287(34):28882-28897
The O-GlcNAc modification involves the attachment of single β-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways. 相似文献
13.
The lactose operon in Escherichia coli was the first known gene regulatory network, and it is frequently used as a prototype for new modeling paradigms. Historically, many of these modeling frameworks use differential equations. More recently, Stigler and Veliz-Cuba proposed a Boolean model that captures the bistability of the system and all of the biological steady states. In this paper, we model the well-known arabinose operon in E. coli with a Boolean network. This has several complex features not found in the lac operon, such as a protein that is both an activator and repressor, a DNA looping mechanism for gene repression, and the lack of inducer exclusion by glucose. For 11 out of 12 choices of initial conditions, we use computational algebra and Sage to verify that the state space contains a single fixed point that correctly matches the biology. The final initial condition, medium levels of arabinose and no glucose, successfully predicts the system’s bistability. Finally, we compare the state space under synchronous and asynchronous update and see that the former has several artificial cycles that go away under a general asynchronous update. 相似文献
14.
The relative sizes of the various structures in Hydra attenuata were compared over a broad range of animal sizes to determine in detail the ability to regulate proportions during regeneration. The three components of the head, namely hypostome, tentacles, and tentacle zone from which the tentacles emerge, the body column, and the basal disc were all measured separately. Ectodermal cell number was used as the measure of size. The results showed that the basal disc proportioned exactly over a 40-fold size range, and the tentacle tissue proportioned exactly over a 20-fold size range. In contrast, the hypostome and tentacle zone proportioned allometrically. With decreasing size, the hypostome and tentacle zone became an increasing fraction of the animal at the expense of body tissue, and in the very smallest regenerates at the expense of tentacle tissue. In their current form, the reaction-diffusion models proposed for pattern regulation in hydra are not consistent with the data. 相似文献
15.
16.
An expedient and mild route to a range of aryl 2-acetamido-2-deoxy-1-thio-beta-D-glucopyranosides has been devised from 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-alpha-D-glucopyranosyl chloride and arylthiols or aryl disulfides using phase transfer catalysis conditions. This simple procedure compresses up to three synthetic steps into a one-pot reaction, obviating the need for tedious workups and chromatography and directly furnishes crystalline materials in good yields. The procedure is compatible with a range of thiols and disulfides and may be amenable for preparing a wide range of thioglycosides with various glycons and aglycons. 相似文献
17.
Dennis RJ Taylor EJ Macauley MS Stubbs KA Turkenburg JP Hart SJ Black GN Vocadlo DJ Davies GJ 《Nature structural & molecular biology》2006,13(4):365-371
O-GlcNAc is an abundant post-translational modification of serine and threonine residues of nucleocytoplasmic proteins. This modification, found only within higher eukaryotes, is a dynamic modification that is often reciprocal to phosphorylation. In a manner analogous to phosphatases, a glycoside hydrolase termed O-GlcNAcase cleaves O-GlcNAc from modified proteins. Enzymes with high sequence similarity to human O-GlcNAcase are also found in human pathogens and symbionts. We report the three-dimensional structure of O-GlcNAcase from the human gut symbiont Bacteroides thetaiotaomicron both in its native form and in complex with a mimic of the reaction intermediate. Mutagenesis and kinetics studies show that the bacterial enzyme, very similarly to its human counterpart, operates via an unusual 'substrate-assisted' catalytic mechanism, which will inform the rational design of enzyme inhibitors. 相似文献
18.
Macauley MS Errington WJ Okon M Schärpf M Mackereth CD Schulman BA McIntosh LP 《The Journal of biological chemistry》2004,279(47):49131-49137
Although sumoylation regulates a diverse and growing number of recognized biological processes, the molecular mechanisms by which the covalent attachment of the ubiquitin-like protein SUMO can alter the properties of a target protein remain to be established. To address this question, we have used NMR spectroscopy to characterize the complex of mature SUMO-1 with the C-terminal domain of human RanGAP1. Based on amide chemical shift and 15N relaxation measurements, we show that the C terminus of SUMO-1 and the loop containing the consensus sumoylation site in RanGAP1 are both conformationally flexible. Furthermore, the overall structure and backbone dynamics of each protein remain unchanged upon the covalent linkage of Lys524 in RanGAP1 to the C-terminal Gly97 of SUMO-1. Therefore, SUMO-1 and RanGAP1 behave as "beads-on-a-string," connected by a flexible isopeptide tether. Accordingly, the sumoylation-dependent interaction of RanGAP1 with the nucleoporin RanBP2 may arise through the bipartite recognition of both RanGAP1 and SUMO-1 rather than through a new binding surface induced in either individual protein upon their covalent linkage. We hypothesize that this conformational flexibility may be a general feature contributing to the recognition of ubiquitin-like modified proteins by their downstream effector machineries. 相似文献
19.
The O-GlcNAc modification is found on many nucleocytoplasmic proteins. The dynamic nature of O-GlcNAc, which in some ways is reminiscent of phosphorylation, has enabled investigators to modulate the stoichiometry of O-GlcNAc on proteins in order to study its function. Although several genetic and pharmacological methods for manipulating O-GlcNAc levels have been described, one of the most direct approaches of increasing global O-GlcNAc levels is by using small-molecule inhibitors of O-GlcNAcase (OGA). As the interest in increasing O-GlcNAc levels has grown, so too has the number of OGA inhibitors. This review provides an overview of the available methods of increasing O-GlcNAc levels, with a special emphasis on inhibition of OGA by small molecules. Known inhibitors of OGA are discussed with particular attention on those most suitable for cell-based biological studies. Several examples in which OGA inhibitors have been used to study the functional role of the O-GlcNAc modification in biological systems are discussed, highlighting the pros and cons of different inhibitors. 相似文献
20.
Matthew S. Macauley 《Carbohydrate research》2009,344(9):1079-2860
Increasing cellular O-GlcNAc levels through pharmacological inhibition of O-GlcNAcase, the enzyme responsible for removal of the O-GlcNAc post-translational modification, is being increasingly used to aid in discerning the roles played by this form of intracellular glycosylation. Interestingly, two forms of O-GlcNAcase have been studied; a full-length isoform that is better characterized, and a shorter nuclear-localized variant, arising from failure to splice out one intron, which has not been as well characterized. Given the increasing use of O-GlcNAcase inhibitors as research tools, we felt that a clear understanding of how these inhibitors affect both isoforms of O-GlcNAcase is important for proper interpretation of studies making use of these inhibitors in cell culture and in vivo. Here we describe an enzymatic characterization of the nuclear variant of human O-GlcNAcase. We find that this short nuclear variant of O-GlcNAcase, which has the identical catalytic domain as the full-length enzyme, has similar trends in a pH-rate profile and Taft linear free energy analysis as the full-length enzyme. These findings strongly suggest that both enzymes use broadly similar transition states. Consistent with this interpretation, the short isoform is potently inhibited by several previously described inhibitors of full-length O-GlcNAcase including PUGNAc, NAG-thiazoline, and the selective O-GlcNAcase inhibitor NButGT. These findings contrast with earlier studies and suggest that studies using O-GlcNAcase inhibitors in cultured cells or in vivo can be interpreted with the knowledge that both these forms of O-GlcNAcase are inhibited when present. 相似文献