首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2837篇
  免费   255篇
  3092篇
  2024年   3篇
  2023年   30篇
  2022年   63篇
  2021年   88篇
  2020年   65篇
  2019年   63篇
  2018年   85篇
  2017年   61篇
  2016年   116篇
  2015年   193篇
  2014年   195篇
  2013年   259篇
  2012年   305篇
  2011年   242篇
  2010年   178篇
  2009年   158篇
  2008年   154篇
  2007年   160篇
  2006年   134篇
  2005年   100篇
  2004年   85篇
  2003年   79篇
  2002年   47篇
  2001年   15篇
  2000年   17篇
  1999年   15篇
  1998年   6篇
  1997年   10篇
  1996年   7篇
  1995年   3篇
  1993年   6篇
  1992年   20篇
  1991年   6篇
  1990年   11篇
  1989年   6篇
  1988年   9篇
  1987年   8篇
  1986年   8篇
  1985年   5篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   7篇
  1979年   3篇
  1978年   7篇
  1976年   4篇
  1975年   9篇
  1971年   3篇
  1937年   3篇
排序方式: 共有3092条查询结果,搜索用时 15 毫秒
921.
Calreticulin (CALR) mutations have recently been reported in 70–84% of JAK2V617F-negative myeloproliferative neoplasms (MPN), and this detection has become necessary to improve the diagnosis of MPN. In a large single-centre cohort of 298 patients suffering from Essential Thrombocythemia (ET), the JAK2V617F, CALR and MPL mutations were noted in 179 (60%), 56 (18.5%) and 13 (4.5%) respectively. For the detection of the CALR mutations, three methods were compared in parallel: high-resolution melting-curve analysis (HRM), product-sizing analysis and Sanger sequencing. The sensitivity for the HRM, product-sizing analysis and Sanger sequencing was 96.4%, 98.2% and 89.3% respectively, whereas the specificity was 96.3%, 100% and 100%. In our cohort, the product-sizing analysis was the most sensitive method and was the easiest to interpret, while the HRM was sometimes difficult to interpret. In contrast, when large series of samples were tested, HRM provided results more quickly than did the other methods, which required more time. Finally, the sequencing method, which is the reference method, had the lowest sensitivity but can be used to describe the type of mutation precisely. Altogether, our results suggest that in routine laboratory practice, product-sizing analysis is globally similar to HRM for the detection of CALR mutations, and that both may be used as first-line screening tests. If the results are positive, Sanger sequencing can be used to confirm the mutation and to determine its type. Product-sizing analysis provides sensitive and specific results, moreover, with the quantitative measurement of CALR, which might be useful to monitor specific treatments.  相似文献   
922.
923.
924.
Plasmonics - We experimentally measure and analytically describe the fluorescence enhancement obtained by depositing CdSe/CdS nanocrystals onto a gold plasmonic crystal, a two-dimensional grating...  相似文献   
925.
Acetyl Coenzyme A-dependent N-, O- and N,O-acetylation of aromatic amines and hydrazines by arylamine N-acetyltransferases is well characterised. Here, we describe experiments demonstrating that human arylamine N-acetyltransferase Type 1 and its murine homologue (Type 2) can also catalyse the direct hydrolysis of acetyl Coenzyme A in the presence of folate. This folate-dependent activity is exclusive to these two isoforms; no acetyl Coenzyme A hydrolysis was found when murine arylamine N-acetyltransferase Type 1 or recombinant bacterial arylamine N-acetyltransferases were incubated with folate. Proton nuclear magnetic resonance spectroscopy allowed chemical modifications occurring during the catalytic reaction to be analysed in real time, revealing that the disappearance of acetyl CH 3 from acetyl Coenzyme A occurred concomitantly with the appearance of a CH 3 peak corresponding to that of free acetate and suggesting that folate is not acetylated during the reaction. We propose that folate is a cofactor for this reaction and suggest it as an endogenous function of this widespread enzyme. Furthermore, in silico docking of folate within the active site of human arylamine N-acetyltransferase Type 1 suggests that folate may bind at the enzyme’s active site, and facilitate acetyl Coenzyme A hydrolysis. The evidence presented in this paper adds to our growing understanding of the endogenous roles of human arylamine N-acetyltransferase Type 1 and its mouse homologue and expands the catalytic repertoire of these enzymes, demonstrating that they are by no means just xenobiotic metabolising enzymes but probably also play an important role in cellular metabolism. These data, together with the characterisation of a naphthoquinone inhibitor of folate-dependent acetyl Coenzyme A hydrolysis by human arylamine N-acetyltransferase Type 1/murine arylamine N-acetyltransferase Type 2, open up a range of future avenues of exploration, both for elucidating the developmental role of these enzymes and for improving chemotherapeutic approaches to pathological conditions including estrogen receptor-positive breast cancer.  相似文献   
926.
The ubiquitin proteasome system (UPS) is the major pathway of intracellular protein degradation and may be involved in the pathophysiology of inflammatory bowel diseases or irritable bowel syndrome. UPS specifically degrades proteins tagged with an ubiquitin chain. We aimed to identify polyubiquitinated proteins during inflammatory response in intestinal epithelial HCT‐8 cells by a proteomic approach. HCT‐8 cells were incubated with interleukin 1β, tumor necrosis factor‐α, and interferon‐γ for 2 h. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using antiubiquitin antibody. Differential ubiquitinated proteins were then identified by LC‐ESI MS/MS. Seven proteins were differentially ubiquitinated between control and inflammatory conditions. Three of them were chaperones: Grp75 and Hsc70 were more ubiquitinated (p < 0.05) and Grp78 was less ubiquitinated (p < 0.05) under inflammatory conditions. The results for Grp75 and Grp78 were then confirmed in HCT‐8 cells and in 2‐4‐6‐trinitrobenzen sulfonic acid induced colitis in rats mimicking inflammatory bowel disease by immunoprecipitation. No difference was observed in irritable bowel syndrome like model. In conclusion, we showed that a proteomic approach is suitable to identify ubiquitinated proteins and that UPS‐regulated expression of Grp75 and Grp78 may be involved in inflammatory response. Further studies should lead to the identification of ubiquitin ligases responsible for Grp75 and Grp78 ubiquitination.  相似文献   
927.
Abstract

The synthesis of 3-deaza-DHPG 2 and its positional isomer 10 via the acid catalysed fusion of imidazole 3 and acetoxymethylglycerol 4 is described. Analogue 2 has activity against herpes simplex viruses and cytomegalovirus.  相似文献   
928.
929.
930.
In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA’s CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a ‘closed’ conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an ‘open’ conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号