首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7071篇
  免费   692篇
  国内免费   2篇
  2023年   34篇
  2022年   98篇
  2021年   155篇
  2020年   103篇
  2019年   110篇
  2018年   125篇
  2017年   121篇
  2016年   201篇
  2015年   333篇
  2014年   337篇
  2013年   450篇
  2012年   540篇
  2011年   470篇
  2010年   333篇
  2009年   298篇
  2008年   329篇
  2007年   350篇
  2006年   311篇
  2005年   275篇
  2004年   260篇
  2003年   213篇
  2002年   183篇
  2001年   160篇
  2000年   165篇
  1999年   114篇
  1998年   74篇
  1997年   73篇
  1996年   47篇
  1995年   52篇
  1994年   38篇
  1993年   44篇
  1992年   97篇
  1991年   51篇
  1990年   92篇
  1989年   81篇
  1988年   71篇
  1987年   55篇
  1986年   57篇
  1985年   66篇
  1984年   44篇
  1983年   40篇
  1980年   38篇
  1979年   57篇
  1978年   51篇
  1977年   49篇
  1976年   36篇
  1975年   39篇
  1974年   48篇
  1973年   35篇
  1972年   42篇
排序方式: 共有7765条查询结果,搜索用时 93 毫秒
901.
A better understanding of the factors that mould ecological community structure is required to accurately predict community composition and to anticipate threats to ecosystems due to global changes. We tested how well stacked climate‐based species distribution models (S‐SDMs) could predict butterfly communities in a mountain region. It has been suggested that climate is the main force driving butterfly distribution and community structure in mountain environments, and that, as a consequence, climate‐based S‐SDMs should yield unbiased predictions. In contrast to this expectation, at lower altitudes, climate‐based S‐SDMs overpredicted butterfly species richness at sites with low plant species richness and underpredicted species richness at sites with high plant species richness. According to two indices of composition accuracy, the Sorensen index and a matching coefficient considering both absences and presences, S‐SDMs were more accurate in plant‐rich grasslands. Butterflies display strong and often specialised trophic interactions with plants. At lower altitudes, where land use is more intense, considering climate alone without accounting for land use influences on grassland plant richness leads to erroneous predictions of butterfly presences and absences. In contrast, at higher altitudes, where climate is the main force filtering communities, there were fewer differences between observed and predicted butterfly richness. At high altitudes, even if stochastic processes decrease the accuracy of predictions of presence, climate‐based S‐SDMs are able to better filter out butterfly species that are unable to cope with severe climatic conditions, providing more accurate predictions of absences. Our results suggest that predictions should account for plants in disturbed habitats at lower altitudes but that stochastic processes and heterogeneity at high altitudes may limit prediction success of climate‐based S‐SDMs.  相似文献   
902.
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D2O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at Hα and Hβ positions reduce spectral congestion in (1H,13C,15N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR.  相似文献   
903.
From the roots of Aconitum vulparia Rchb., collected in Prüm (Germany), a new norditerpenoid alkaloid, named alexhumboldtine, has been isolated along with the known norditerpenoid alkaloids lappaconitine, anthranoyllycoctonine, lycoctonine, puberaconitine, ajacine, and septentriodine. The structure of alexhumboldtine was established on the basis of 1H, 13C, DEPT, homonuclear 1H COSY, NOESY, HSQC, and HMBC NMR studies. From the aerial parts of the plant another norditerpenoid alkaloid, aconorine, has been isolated.  相似文献   
904.
Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate.  相似文献   
905.
906.
A novel approach to the study of molecular interactions on the surface of mammalian cells using a QCM biosensor was developed. For this study, an epidermoid carcinoma cell line (A-431) and a breast adenocarcinoma cell line (MDA-MB-468) were immobilized onto polystyrene-coated quartz crystals. The binding and dissociation between the lectin Con A and the cells as well as the inhibition of the binding by monosaccharides were monitored in real time and provided an insight into the complex avidic recognition of cell glycoconjugates. The real-time lectin screening of a range of lectins, including Con A, DBA, PNA and UEA-I, enabled the accurate study of the glycosylation changes between cells, such as changes associated with cancer progression and development. Furthermore, the kinetic parameters of the interaction of Con A with MDA-MB-468 cells were studied. This application provides investigators in the field of glycobiology with a novel tool to study cell surface glycosylation and may also have impacts on drug discovery.  相似文献   
907.
Carotenoid cleavage, catalyzed by the 9-cis-epoxycarotenoid dioxygenase (NCED) constitutes a key step in the regulation of ABA biosynthesis. In Arabidopsis, this enzyme is encoded by five genes. NCED3 has been shown to play a major role in the regulation of ABA synthesis in response to water deficit, whereas NCED6 and NCED9 have been shown to be essential for the ABA production in the embryo and endosperm that imposes dormancy. Reporter gene analysis was carried out to determine the spatiotemporal pattern of NCED5 and NCED9 gene expression. GUS activity from the NCED5 promoter was detected in both the embryo and endosperm of developing seeds with maximal staining after mid-development. NCED9 expression was found at early stages in the testa outer integument layer 1, and after mid-development in epidermal cells of the embryo, but not in the endosperm. In accordance with its temporal- and tissue-specific expression, the phenotypic analysis of nced5 nced6 nced9 triple mutant showed the involvement of the NCED5 gene, together with NCED6 and NCED9, in the induction of seed dormancy. In contrast to nced6 and nced9, however, nced5 mutation did not affect the gibberellin required for germination. In vegetative tissues, combining nced5 and nced3 mutations reduced vegetative growth, increased water loss upon dehydration, and decreased ABA levels under both normal and stressed conditions, as compared with nced3. NCED5 thus contributes, together with NCED3, to ABA production affecting plant growth and water stress tolerance.  相似文献   
908.
Hit-to-lead evolution of 2-(2-((2-(4-chlorophenoxy)ethyl)thio)-1H-benzo[d]imidazol-1-yl)acetic acid (1), discovered in a high-throughput screening campaign as a novel chemotype of CRTh2 receptor antagonist, is presented. SAR development as well as in vitro and in vivo DMPK properties of selected representatives of substituted 2-(2-(benzylthio)-1H-benzo[d]imidazol-1-yl)acetic acids are discussed.  相似文献   
909.
910.
Kojima M  Becker VK  Altaner CM 《Planta》2012,235(2):289-297
Koromiko [Hebe salicifolia G. Forst. (Pennell)] is a woody angiosperm native to New Zealand and Chile. Hebe spp. belong to the otherwise herbaceous family Plantaginaceae in the order Lamiales. Reaction wood exerting expansional forces was found on the lower side of leaning H. salicifolia stems. Such reaction wood is atypical for angiosperms, which commonly form contracting reaction wood on the upper side of leaning stems. Reaction wood typical for angiosperms is formed by species in other families in the order Lamiales. This suggests that the form of reaction wood is specific to the family level. Functionally the reaction wood of H. salicifolia is similar to that found in gymnosperms, which both act by pushing. However, their chemical, anatomical and physical characteristics are different. Typical features of reaction wood present in gymnosperms such as high density, thick-walled rounded cells and the presence of (1 → 4)-β-galactan in the secondary cell wall layer are absent in H. salicifolia reaction wood. Reaction wood of H. salicifolia varies from normal wood in having a higher microfibril angle, which is likely to determine the direction of generated maturation stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号