首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7909篇
  免费   653篇
  国内免费   1篇
  2023年   27篇
  2022年   80篇
  2021年   177篇
  2020年   79篇
  2019年   116篇
  2018年   132篇
  2017年   115篇
  2016年   247篇
  2015年   375篇
  2014年   445篇
  2013年   516篇
  2012年   669篇
  2011年   659篇
  2010年   458篇
  2009年   444篇
  2008年   537篇
  2007年   527篇
  2006年   466篇
  2005年   460篇
  2004年   436篇
  2003年   415篇
  2002年   367篇
  2001年   70篇
  2000年   47篇
  1999年   65篇
  1998年   80篇
  1997年   58篇
  1996年   50篇
  1995年   40篇
  1994年   50篇
  1993年   53篇
  1992年   31篇
  1991年   35篇
  1990年   23篇
  1989年   23篇
  1988年   25篇
  1987年   16篇
  1986年   17篇
  1985年   13篇
  1984年   10篇
  1983年   17篇
  1982年   8篇
  1981年   16篇
  1980年   6篇
  1979年   4篇
  1978年   10篇
  1977年   12篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
排序方式: 共有8563条查询结果,搜索用时 671 毫秒
51.
A real-time database/models base/expert system in predictive microbiology   总被引:2,自引:0,他引:2  
Summary This paper describes the development and operation of a database/models base/expert system funded by the Ministry of Agriculture, Fisheries and Food in the UK. As part of an on-going coordinated program on predictive microbiology, the system being established involves storage of data and models relevant to changes in populations of food-borne pathogens under given conditions. The system is due to be completed by March 1994.  相似文献   
52.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
53.
Bis(2-bromo-4,5-dimethoxyphenyl)sulfide (5) and bis(2-bromo-4,5-dimethoxyphenyl) selenide (7) have been shown to block cells in the G2/M phase of the cell cycle, whereas the debromo (4, 6) equivalents do not. The dibromoselenide (7) is cytotoxic to tumour cells in vitro and has been shown to increase the mitotic index of treated cells. These biological effects are consistent with disruption of the mitotic apparatus. This agent does not inhibit microtubule assembly in vitro, but does bind to tubulin. Molecular modelling of these structures indicates that their spatial and electronic structures may make an important contribution to the biological activity.  相似文献   
54.
55.
Recent studies have indicated that the C4 perennial bioenergy crops switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) accumulate significant amounts of soil carbon (C) owing to their extensive root systems. Soil C accumulation is likely driven by inter- and intraspecific variability in plant traits, but the mechanisms that underpin this variability remain unresolved. In this study we evaluated how inter- and intraspecific variation in root traits of cultivars from switchgrass (Cave-in-Rock, Kanlow, Southlow) and big bluestem (Bonanza, Southlow, Suther) affected the associations of soil C accumulation across soil fractions using stable isotope techniques. Our experimental field site was established in June 2008 at Fermilab in Batavia, IL. In 2018, soil cores were collected (30 cm depth) from all cultivars. We measured root biomass, root diameter, specific root length, bulk soil C, C associated with coarse particulate organic matter (CPOM) and fine particulate organic matter plus silt- and clay-sized fractions, and characterized organic matter chemical class composition in soil using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry. C4 species were established on soils that supported C3 grassland for 36 years before planting, which allowed us to use differences in the natural abundance of stable C isotopes to quantify C4 plant-derived C. We found that big bluestem had 36.9% higher C4 plant-derived C compared to switchgrass in the CPOM fraction in the 0–10 cm depth, while switchgrass had 60.7% higher C4 plant-derived C compared to big bluestem in the clay fraction in the 10–20 cm depth. Our findings suggest that the large root system in big bluestem helps increase POM-C formation quickly, while switchgrass root structure and chemistry build a mineral-bound clay C pool through time. Thus, both species and cultivar selection can help improve bioenergy management to maximize soil carbon gains and lower CO2 emissions.  相似文献   
56.
Between October and December of 1996–1999, off eastern Antarctica (60°-150°E), we darted 31 crabeater seals with midazolam and pethidine at estimated dose rates of 0.15–0.4 mg/kg and 1–3 mg/kg, respectively. Maximum sedation was reached at 23 ± 9 min (n = 18) and first signs of recovery were noted at 54 ± 24 min (n = 4). Seals greater than 250 kg body-mass were sedated by administration of approximately 90–100 mg midazolam and 600 mg pethidine, but the degree of sedation was unpredictable and did not permit invasive procedures in some cases. Behavior of the seal and adjacent conspecifics affected the success of procedures and our ability to monitor vital signs. Naloxone and flumazenil reversed sedation, making this combination attractive for use in animals adjacent to water. Additional ketamine was administered to two seals, resulting in improved restraint.  相似文献   
57.
CD40 is a receptor with numerous functions in the activation of antigen presenting cells (APCs), particularly dendritic cells (DC). Using phage display technology, we identified linear peptides containing a novel FPGN/S consensus sequence that enhances the binding of phage to a purified murine CD40-immunoglobulin (Ig) fusion protein (CD40-Ig), but not to Ig alone. To examine the ability the FPGN/S peptides to enhance adenoviral infection of CD40-positive cells, we used bifunctional peptides consisting of an FPGN-containing peptide covalently linked to an adenoviral knob-binding peptide (KBP). One of these, FPGN2-KBP, was able to enhance adenoviral infection of both murine and human DCs in a dose-dependent manner. FPGN2-KBP also improved infection of murine B cell blasts, a murine B lymphoma cell line (L10A), and immortalized human B cells. To demonstrate that enhancement of adenoviral infection depended on the presence of CD40, we analyzed infection of the breast cancer line, SKBR3, that does not express CD40 or the adenovirus cellular receptor, CAR. Infection of SKBR3 cells was enhanced by FPGN2-KBP following transient transfection with a plasmid vector that expresses murine CD40, but not when the cells were mock-transfected. In conclusion, we have isolated a peptide that binds to murine CD40, and promotes the uptake of adenoviruses into CD40-expressing cells of both murine and human origin, suggesting that it may have potential applications for antigen delivery to CD40-positive antigen-presenting cells.  相似文献   
58.
Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease.  相似文献   
59.
Era is a highly conserved GTPase essential for bacterial growth. The N-terminal part of Era contains a conserved GTPase domain, whereas the C-terminal part of the protein contains an RNA- and membrane-binding domain, the KH domain. To investigate whether the binding of Era to 16S rRNA and membrane requires its GTPase activity and whether the GTPase domain is essential for these activities, the N- and C-terminal parts of the Streptococcus pneumoniae Era - Era-N (amino acids 1-185) and Era-C (amino acids 141-299), respectively - were expressed and purified. Era-C, which had completely lost GTPase activity, bound to the cytoplasmic membrane and 16S rRNA. In contrast, Era-N, which retained GTPase activity, failed to bind to RNA or membrane. These results therefore indicate that the binding of Era to RNA and membrane does not require the GTPase activity of the protein and that the RNA-binding domain is an independent, functional domain. The physiological effects of the overexpression of Era-C were assessed. The Escherichia coli cells overexpressing Era and Era-N exhibited the same growth rate as wild-type E. coli cells. In contrast, the E. coli cells overexpressing Era-C exhibited a reduced growth rate, indicating that the overexpression of Era-C inhibits cell growth. Furthermore, overexpression of era-N and era-C resulted in morphological changes. Finally, purified Era and Era-C were able to bind to poly(U) RNA, and the binding of Era to poly(U) RNA was significantly inhibited by liposome, as the amount of Era bound to the RNA decreased proportionally with the increase of liposome in the assay. Therefore, this study provides the first biochemical evidence that both binding sites are overlapping. Together, these results indicate that the RNA- and membrane-binding domain of Era is a separate, functional entity and does not require the GTPase activity or the GTPase domain of the protein for activity.  相似文献   
60.
The present study was undertaken to further characterize the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata in the central processing of nociceptive and cardiovascular signals, and its modulation by metenkephalin. In Sprague-Dawley rats anesthetized with pentobarbital sodium, we found that all 125 spontaneously active NRGC neurons that responded to noxious stimuli (tail clamp) also exhibited arterial pressure-relatedness. Forty neurons additionally manifested cardiac periodicity that persisted even during nociceptive responses. While maintaining their cardiovascular responsive characteristics, the nociception-related NRGC neuronal activity was blocked, naloxone-reversibly (0.5 mg/kg, i.v.), by morphine (5 mg/kg, i.v.). Microiontophoretically applied met-enkephalin suppressed the responsiveness of NRGC neurons to individually delivered tail clamp or transient hypertension induced by phenylephrine (5 µg/kg, i.v.). Interestingly, in NRGC neurons that manifested both nociception and arterial pressure relatedness, the preferential reduction in the response to noxious stimuli upon simultaneous elevation in systemic arterial pressure was reversed to one that favored nociception in the presence of met-enkephalin. All actions of met-enkephalin were discernibly blocked by the opioid receptor antagonist, naloxone. Our results suggest that individual NRGC neurons may participate in the processing of both nociceptive and cardiovascular information, or in the coordination of the necessary circulatory supports during nociception. In addition, neuropeptides such as met-enkephalin may exert differential modulation on neuronal responsiveness according to the prevailing physiologic status of the animal. They also showed that NRGC may be a central integrator for pain and cardiovascular-related functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号