首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7841篇
  免费   652篇
  国内免费   1篇
  8494篇
  2023年   33篇
  2022年   87篇
  2021年   175篇
  2020年   77篇
  2019年   116篇
  2018年   132篇
  2017年   114篇
  2016年   245篇
  2015年   373篇
  2014年   444篇
  2013年   513篇
  2012年   667篇
  2011年   649篇
  2010年   449篇
  2009年   434篇
  2008年   531篇
  2007年   523篇
  2006年   465篇
  2005年   456篇
  2004年   432篇
  2003年   412篇
  2002年   365篇
  2001年   67篇
  2000年   46篇
  1999年   64篇
  1998年   80篇
  1997年   58篇
  1996年   50篇
  1995年   40篇
  1994年   49篇
  1993年   52篇
  1992年   31篇
  1991年   34篇
  1990年   22篇
  1989年   23篇
  1988年   25篇
  1987年   16篇
  1986年   17篇
  1985年   13篇
  1984年   8篇
  1983年   17篇
  1982年   8篇
  1981年   15篇
  1980年   6篇
  1978年   10篇
  1977年   12篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
排序方式: 共有8494条查询结果,搜索用时 0 毫秒
81.
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.  相似文献   
82.
The protein-tyrosine phosphatase Shp2 plays an essential role in growth factor and integrin signaling, and Shp2 mutations cause developmental defects and/or malignancy. Previous work has placed Shp2 upstream of Ras. However, the mechanism of Shp2 action and its substrate(s) are poorly defined. Additional Shp2 functions downstream of, or parallel to, Ras/Erk activation also are proposed. Here, we show that Shp2 promotes Src family kinase (SFK) activation by regulating the phosphorylation of the Csk regulator PAG/Cbp, thereby controlling Csk access to SFKs. In Shp2-deficient cells, SFK inhibitory C-terminal tyrosines are hyperphosphorylated, and the tyrosyl phosphorylation of multiple SFK substrates, including Plcgamma1, is decreased. Decreased Plcgamma1 phosphorylation leads to defective Ras activation on endomembranes, and may help account for impaired Erk activation in Shp2-deficient cells. Decreased phosphorylation/activation of other SFK substrates may explain additional consequences of Shp2 deficiency, including altered cell spreading, stress fibers, focal adhesions, and motility.  相似文献   
83.
The behavioral interactions of 22 infant and mother Japanese macaques with other group members were studied. Focal-animal observations were made from the time of each infant’s birth until 1 year of age. Infants and mothers both displayed exceedingly strong preferences for associating with matrilineal kin and, specifically, for female kin. The degree of genetic relatedness was positively correlated with levels of spatial proximity, contact, grooming, aggression, and play. Overall frequencies of interactions with nonkin were very low, and partner sex was not an important factor in interactions with nonkin. There were no significant differences between male and female infants in interactions with kin versus nonkin. There was only one significant difference between male and female infants in interactions with males versus females: female infants showed stronger preferences for initiating proximity with females over males than did male infants. Because mothers provide the focal point for infant interactions during the first year of life, we compared the behavior of infants and mothers. Mothers were the recipients of more social interactions than were infants, mothers engaged in more grooming than did infants, and infants engaged in more social play than did mothers. These findings are only partially consistent with kin-selection theory, and the inadequacies of studying matrilineal kin discrimination to test kin selection are reviewed. The near-absence of infant sex differences in associations with social partners suggests that although maternal kin other than the mother are important to infant socialization, they probably do not contribute to the development of behavioral sex differences until after the first year of life.  相似文献   
84.

Background

Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations.

Methods and Findings

While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC+7) and trisomy 19 (hNPC+19), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC+7 and hNPC+19 cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (βIII-tubulin) in hNPC+7 and hNPC+19, using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50–60 population doublings and never showed neoplastic changes. Although hNPC+7 and hNPC+19 survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line.

Conclusions

We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications.  相似文献   
85.
Retinal lesions or other ocular manifestations are serious consequences of infection with the protozoan parasite Toxoplasma gondii. Whilst classically considered a consequence of congenital transmission, recent screening studies estimated that 2% of T. gondii seropositive persons in Europe and North America have retinal lesions, most of them persisting unnoticed. The situation is more dramatic in South America, probably due to the predominance of virulent strains. Some of these strains seem to exhibit ocular or neuronal tropism and are responsible for severe ocular lesions. Despite the medical importance, the physiopathological mechanisms have only recently begun to be elucidated. The particular immune-privileged situation in the eye has to be considered. Studies on French patients showed low or undetectable ocular parasite loads, but a clear Th1/Th17 type immune reaction. Suitable mouse models have appeared in the last few years. Using such a model, IL-17A proved to impair parasite control and induce pathology. In contrast, in South American patients, the parasite seems to be much less efficiently controlled through a Th2 type or suppressive immune response that favors parasite replication. Finally, several host genetic markers controlling immune response factors have been associated with ocular involvement of T. gondii infection, mainly in South America.  相似文献   
86.
Borrelia burgdorferi (Bb) is the causative agent of Lyme disease in the United States, a disease that can result in carditis, and chronic and debilitating arthritis and/or neurologic symptoms if left untreated. Bb survives in the midgut of the Ixodes scapularis tick, or within tissues of immunocompetent hosts. In the early stages of infection, the bacteria are present in the bloodstream where they must resist clearance by the innate immune system of the host. We have found a novel role for outer surface protein C (OspC) from B. burgdorferi and B. garinii in interactions with the complement component C4b and bloodstream survival in vivo. Our data show that OspC inhibits the classical and lectin complement pathways and competes with complement protein C2 for C4b binding. Resistance to complement is important for maintenance of the lifecycle of Bb, enabling survival of the pathogen within the host as well as in the midgut of a feeding tick when ospC expression is induced.  相似文献   
87.
A general assumption in quantitative genetics is the existence of an intermediate phenotype with higher mean individual fitness in the average environment than more extreme phenotypes. Here, we investigate the evolvability and presence of such a phenotype in wild bird populations from an eleven‐year experiment with four years of artificial selection for long and short tarsus length, a proxy for body size. The experiment resulted in strong selection in the imposed directions. However, artificial selection was counteracted by reduced production of recruits in offspring of artificially selected parents. This resulted in weak natural selection against extreme trait values. Significant responses to artificial selection were observed at both the phenotypic and genetic level, followed by a significant return toward preexperimental means. During artificial selection, the annual observed phenotypic response closely followed the predicted response from quantitative genetic theory ( = 0.96, = 0.56). The rapid return to preexperimental means was induced by three interacting mechanisms: selection for an intermediate phenotype, immigration, and recombination between selected and unselected individuals. The results of this study demonstrates the evolvability of phenotypes and that selection may favor an intermediate phenotype in wild populations.  相似文献   
88.
Snowflake Vitreoretinal Degeneration (SVD) is associated with the R162W mutation of the Kir7.1 inwardly-rectifying potassium channel. Kir7.1 is found at the apical membrane of Retinal Pigment Epithelial (RPE) cells, adjacent to the photoreceptor neurons. The SVD phenotype ranges from RPE degeneration to an abnormal b-wave to a liquid vitreous. We sought to determine how this mutation alters the structure and function of the human Kir7.1 channel. In this study, we expressed a Kir7.1 construct with the R162W mutation in CHO cells to evaluate function of the ion channel. Compared to the wild-type protein, the mutant protein exhibited a non-functional Kir channel that resulted in depolarization of the resting membrane potential. Upon co-expression with wild-type Kir7.1, R162W mutant showed a reduction of IKir7.1 and positive shift in ‘0’ current potential. Homology modeling based on the structure of a bacterial Kir channel protein suggested that the effect of R162W mutation is a result of loss of hydrogen bonding by the regulatory lipid binding domain of the cytoplasmic structure.  相似文献   
89.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   
90.
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号