首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11877篇
  免费   1043篇
  国内免费   4篇
  12924篇
  2023年   51篇
  2022年   148篇
  2021年   260篇
  2020年   127篇
  2019年   182篇
  2018年   211篇
  2017年   165篇
  2016年   349篇
  2015年   552篇
  2014年   644篇
  2013年   727篇
  2012年   973篇
  2011年   931篇
  2010年   618篇
  2009年   586篇
  2008年   774篇
  2007年   774篇
  2006年   679篇
  2005年   684篇
  2004年   648篇
  2003年   576篇
  2002年   529篇
  2001年   115篇
  2000年   78篇
  1999年   112篇
  1998年   131篇
  1997年   80篇
  1996年   73篇
  1995年   59篇
  1994年   72篇
  1993年   70篇
  1992年   64篇
  1991年   58篇
  1990年   57篇
  1989年   54篇
  1988年   52篇
  1987年   47篇
  1986年   36篇
  1985年   32篇
  1984年   30篇
  1983年   45篇
  1982年   32篇
  1981年   52篇
  1980年   25篇
  1978年   33篇
  1977年   36篇
  1976年   27篇
  1975年   23篇
  1974年   31篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
The pathogenesis underlying the selective degeneration of nigral dopaminergic neurons in Parkinson's disease is not fully understood but several lines of evidence implicate the role of oxidative stress and mitochondrial dysfunction. Depletion in levels of the thiol reducing agent glutathione (GSH + GSSG) is the earliest reported biochemical event to occur in the Parkinsonian substantia nigra prior to selective loss of complex I (CI) activity associated with the disease believed to contribute to subsequent dopaminergic cell death. Recent studies from our laboratory have demonstrated that acute reduction in both cellular and mitochondrial glutathione levels results in increased oxidative stress and a decrease in mitochondrial function linked to a selective decrease in CI activity through an NO-mediated mechanism (Jha, N.; Jurma, O.; Lalli, G.; Liu, Y.; Pettus, E. H.; Greenamyre, J. T.; Liu, R. M.; Forman, H. J.; Andersen, J. K. Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease J. Biol. Chem. 275: 26096-26101; 2000. Hsu, M.; Srinivas, B.; Kumar, J.; Subramanian, R.; Andersen, J. Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson's disease J. Neurochem. 92: 1091-1103.2005.). However, the effect of prolonged glutathione depletion on dopaminergic cells is not known. In this present study, using low concentrations of buthionine-S-sulfoximine, a chemical inhibitor of the de novo glutathione synthesizing enzyme glutamate cysteine ligase, we developed a chronic model in which glutathione depletion in dopaminergic N27 cells for a 7-day period was found to lead to inhibition of CI activity via a peroxynitrite-mediated event which is reversible by the thiol reducing agent, dithiothreitol, and coincides with increased S-nitrosation of mitochondrial proteins.  相似文献   
82.
Allyl isothiocyanate (AITC) is a dietary component with possible anticancer effects, though much information about AITC and cancer has been obtained from cell studies. To investigate the effect of AITC on DNA integrity in vivo, a crossover study was conducted. Adults (n= 46) consumed AITC, AITC-rich vegetables [mustard and cabbage (M/C)] or a control treatment with a controlled diet for 10 days each. On day 11, volunteers provided blood and urine before and after consuming treatments. Volunteers were characterized for genotype for GSTM1 and GSTT1 (glutathione S-transferases) and XPD (DNA repair). DNA integrity in peripheral blood mononuclear cells was assessed by single-cell gel electrophoresis. Urine was analyzed for 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) and creatinine. Ten-day intake of neither AITC nor M/C resulted in statistically significant differences in DNA strand breaks [least squares mean (LSmean) % DNA in tail±S.E.M.: 4.8±0.6 for control, 5.7±0.7 for AITC, 5.3±0.6 for M/C] or urinary 8-oxodG (LSmean μg 8-oxodG/g creatinine±S.E.M.: 2.95±0.09 for control, 2.88±0.09 for AITC, 3.06±0.09 for M/C). Both AITC and M/C increased DNA strand breaks 3 h postconsumption (LSmean % DNA in tail±S.E.M.: 3.2±0.7 for control, 8.3±1.7 for AITC, 8.0±1.7 for M/C), and this difference disappeared at 6 h (4.2±0.9 for control, 5.7±1.2 for AITC, 5.5±1.2 for M/C). Genotypes for GSTM1, GSTT1 and XPD were not associated with treatment effects. In summary, DNA damage appeared to be induced in the short term by AITC and AITC-rich products, but that damage disappeared quickly, and neither AITC nor AITC-rich products affected DNA base excision repair.  相似文献   
83.
84.
Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA–protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5′-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5′-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2–36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.  相似文献   
85.
Thyroid hormones are essential for vertebrate development. There is a characteristic rise in thyroid hormone levels in blood during critical periods of thyroid hormone-regulated development. Thyroid hormones are lipophilic compounds, which readily partition from an aqueous environment into a lipid environment. Thyroid hormone distributor proteins are required to ensure adequate distribution of thyroid hormones, throughout the aqueous environment of the blood, and to counteract the avid partitioning of thyroid hormones into the lipid environment of cell membranes. In human blood, these proteins are albumin, transthyretin and thyroxine-binding globulin. We analyzed the developmental profile of thyroid hormone distributor proteins in serum from a representative of each order of marsupials (M. eugenii; S.crassicaudata), a reptile (C. porosus), in two species of salmonoid fishes (S. salar; O. tshawytsch), and throughout a calendar year for sea bream (S. aurata). We demonstrated that during development, these animals have a thyroid hormone distributor protein present in their blood which is not present in the adult blood. At least in mammals, this additional protein has higher affinity for thyroid hormones than the thyroid hormone distributor proteins in the blood of the adult. In fish, reptile and polyprotodont marsupial, this protein was transthyretin. In a diprotodont marsupial, it was thyroxine-binding globulin. We propose an hypothesis that an augmented thyroid hormone distributor protein network contributes to the rise in total thyroid hormone levels in the blood during development.  相似文献   
86.
Archaea have been detected throughout the oceanic water column and are quantitatively important members of picoplankton in the deep ocean. Two common groups, group I Crenarchaeota and group II Euryarchaeota, are consistently detected in warm hydrothermal fluid and are assumed to have been drawn into the subseafloor, mixed with hydrothermal fluid and then expelled. However, because they remain resistant to cultivation, very little is known about their physiology. Here we show that cold deep-seawater from the axial valley of Endeavour Segment on the Juan de Fuca Ridge contains not only groups I and II archaea as expected, but also unique potentially archaeal nitrogenase (nifH) genes, which are required for nitrogen fixation. These nifH genes are phylogenetically distinct and have dissimilar G+C content compared with those of hydrothermal vent archaea, suggesting that they belong to non-thermophilic deep-sea archaea. Furthermore, this sample did not contain mcrA genes, which are present in methanogens, the only known archaeal nitrogen fixers. These nifH genes were not detected in upper water column samples, or in a deep-seawater sample 100 km away from the spreading axis of the Juan de Fuca Ridge. We propose that these unique nifH genes may be localized to archaea that circulate through the nitrogen-poor subseafloor at the mid-ocean ridge as part of their life cycle.  相似文献   
87.
The environmental contexts of the karstic hominin sites in South Africa have been established largely by means of faunal associations; taken together these data suggest a trend from relatively closed and more mesic to open, drier environments from about 3 to 1.5 Ma. Vrba argued for a major shift within this trend ca. 2.4-2.6 Ma, an influential proposal that posited links between bovid (and hominin) radiation in Africa and the intensification of Northern Hemisphere Glaciation. Yet faunal approaches often rely on habitat and feeding preferences of modern taxa that may differ from those of their extinct predecessors. Here we explore ways of extending 13C/12C data from fossil mammals beyond denoting “presence” or “absence” of C4 grasses using the evolution of open environments in South Africa as a case study. To do so we calculated the relative proportions of C3-, mixed-, and C4-feeding herbivores for all the hominin sites for which we have sufficient data based on 13C/12C analyses of fossil tooth enamel. The results confirm a general trend towards more open environments since 3 Ma, but they also emphasize a marked change to open grassy habitats in the latest Pliocene/early Pleistocene. Mean 13C/12C for large felids also mirrored this trend.  相似文献   
88.
As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion.  相似文献   
89.
Improved vectors for nisin-controlled expression in gram-positive bacteria   总被引:29,自引:0,他引:29  
Bryan EM  Bae T  Kleerebezem M  Dunny GM 《Plasmid》2000,44(2):183-190
  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号