首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   683篇
  免费   44篇
  2023年   6篇
  2022年   8篇
  2021年   21篇
  2020年   8篇
  2019年   21篇
  2018年   11篇
  2017年   7篇
  2016年   10篇
  2015年   23篇
  2014年   28篇
  2013年   43篇
  2012年   43篇
  2011年   49篇
  2010年   32篇
  2009年   19篇
  2008年   39篇
  2007年   29篇
  2006年   24篇
  2005年   29篇
  2004年   25篇
  2003年   19篇
  2002年   26篇
  2001年   23篇
  2000年   26篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1995年   4篇
  1992年   11篇
  1991年   8篇
  1990年   5篇
  1988年   2篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   10篇
  1977年   3篇
  1976年   5篇
  1975年   10篇
  1974年   3篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
201.
Barley (Hordeum vulgare L.) storage proteins, which have a high content of proline (Pro) and glutamine, are cleaved by cysteine endoproteases to yield peptides with a Pro next to the N-terminal and/or C-terminal amino acid residues. A peptidase cleaving after Xaa-Pro- at the N terminus of peptides was purified from green barley malt. It was identified as a serine-type dipeptidyl peptidase (DPP), based on inhibitor studies, and the nature of the cleavage product. It is a monomeric glycoprotein with an apparent molecular mass of 105 kD (85 kD after deglycosylation), with a pI of 3.55 and a pH optimum at 7.2. Substrate specificity was determined with a series of fluorogenic peptide substrates with the general formula Xaa-Pro-AMC, where Xaa is an unspecified amino acid and AMC is 7-amino-4-methylcoumarin. The best substrates were Xaa = lysine and arginine, while the poorest were Xaa = aspartic acid, phenylalanine, and glutamic acid. The K(m) values ranged from 0.071 to 8.9 microM, compared with values of 9 to 130 microM reported for mammalian DPP IVs. We discuss the possible role of DPP IV in the degradation of small Pro-containing peptides transported from the endosperm to the embryo of the germinating barley grain.  相似文献   
202.
Activation of the canonical mitogen-activated protein kinase (MAPK) cascade by soluble mitogens is blocked in non-adherent cells. It is also blocked in cells in which the cAMP-dependent protein kinase (PKA) is activated. Here we show that inhibition of PKA allows anchorage-independent stimulation of the MAPK cascade by growth factors. This effect is transient, and its duration correlates with sustained tyrosine phosphorylation of paxillin and focal-adhesion kinase (FAK) in non-adherent cells. The effect is sensitive to cytochalasin D, implicating the actin cytoskeleton as an important factor in mediating this anchorage-independent signalling. Interestingly, constitutively active p21-activated kinase (PAK) also allows anchorage-independent MAPK signalling. Furthermore, PKA negatively regulates PAK in vivo, and whereas the induction of anchorage-independent signaling resulting from PKA suppression is blocked by dominant negative PAK, it is markedly prolonged by constitutively active PAK. These observations indicate that PKA and PAK are important regulators of anchorage-dependent signal transduction.  相似文献   
203.
Beauveria bassiana is a well-known broad-range arthropod pathogen which has been used in biological control of several pest insects and ticks such as Boophilus microplus. Beauveria amorpha has both endophytic and entomopathogenic characteristics, but its capacity for biological control has still not been studied. During the processes of host infection, B. bassiana and B. amorpha produce several hydrolytic extracellular enzymes, including proteases and chitinases, which probably degrade the host cuticle and are suggested to be pathogenicity determinants. To access the role of these enzymes during infection in the tick B. microplus, we analyzed their secretion during fungus growth in single and combined carbon sources, compared to complex substrates such as chitin and B. microplus cuticle. Chitin and tick cuticle-induced chitinase in both fungus and protease was induced only by tick cuticle. SEM analysis of B. amorpha and B. bassiana infecting B. microplus showed apressorium formation during penetration on cattle tick cuticle.  相似文献   
204.
Human kallikreins are serine proteases that comprise a recently identified large and closely related 15-member family. The kallikreins include both regulatory- and degradative-type proteases, impacting a variety of physiological processes including regulation of blood pressure, neuronal health, and the inflammatory response. While the function of the majority of the kallikreins remains to be elucidated, two members are useful biomarkers for prostate cancer and several others are potentially useful biomarkers for breast cancer, Alzheimer's, and Parkinson's disease. Human tissue kallikrein (human K1) is the best functionally characterized member of this family, and is known to play an important role in blood pressure regulation. As part of this function, human K1 exhibits unique dual-substrate specificity in hydrolyzing low molecular weight kininogen between both Arg-Ser and Met-Lys sequences. We report the X-ray crystal structure of mature, active recombinant human apo K1 at 1.70 A resolution. The active site exhibits structural features intermediate between that of apo and pro forms of known kallikrein structures. The S2 to S2' pockets demonstrate a variety of conformational changes in comparison to the porcine homolog of K1 in complex with peptide inhibitors, including the displacement of an extensive solvent network. These results indicate that the binding of a peptide substrate contributes to a structural rearrangement of the active-site Ser 195 resulting in a catalytically competent juxtaposition with the active-site His 57. The solvent networks within the S1 and S1' pockets suggest how the Arg-Ser and Met-Lys dual substrate specificity of human K1 is accommodated.  相似文献   
205.
We synthesized one series of fluorogenic substrates for cathepsin B derived from the peptide Bz-F-R-MCA (Bz=benzoyl, MCA=7-methyl-coumarin amide) substituting Phe at the P(2) position by non-natural basic amino acids that combine a positively charged group with aromatic or aliphatic radicals at the same side chain, namely, 4-aminomethyl-phenylalanine, 4-guanidine-phenylalanine, 4-aminomethyl-N-isopropyl-phenylalanine, 3-pyridyl-alanine, 4-piperidinyl-alanine, 4-aminomethyl-cyclohexyl-alanine, 4-aminocyclohexyl-alanine, and N(im)-dimethyl-histidine. Bz-F-R-MCA was the best substrate for cathepsin B but also hydrolyzed Bz-R-R-MCA with lower efficiency, since the protease accepts Arg at S(2) due to the presence of Glu(245) at the bottom of this subsite. The presence of the basic non-natural amino acids at the P(2) position of the substrate partially restored the catalytic efficiency of cathepsin B. All the kinetic parameters for hydrolysis of the peptides described in this paper are in accordance with the structures of the S(2) pocket previously described. In addition, the substrate with 4-aminocyclohexyl-alanine presented the highest affinity to cathepsin B although the peptide was obtained from a mixture of cis/trans isomers of the amino acid and we were not able to separate them. For comparison all the obtained substrates were assayed with cathepsin L and papain.  相似文献   
206.
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.  相似文献   
207.
We investigated the influence of pH and divalent cations (Zn2+, Mg2+ and Ca2+) on high molecular weight kininogen processing by cathepsin B. At pH 6.3, high molecular weight kininogen is hydrolyzed by cathepsin B at three sites generating fragments of 80, 60 and 40 kDa. Cathepsin B has kininogenase activity at this pH which is improved in the absence of divalent cations. At pH 7.35, high molecular weight kininogen is slightly cleaved by cathepsin B into fragments of 60 kDa, and cathepsin B kininogenase activity is impaired. Our results suggest that high molecular weight kininogen is a substrate for cathepsin B under pathophysiological conditions.  相似文献   
208.
We examined simultaneous plastic and latitudinal interpopulation variation in the time course of hemolymph protein titers during egg production in the lubber grasshopper. Our goal was to gain insight into possible evolutionary changes in the physiology underlying reproductive plasticity. We used lubbers from three locations in the United States (Florida [FL], Louisiana [LA], and Georgia [GA]), each offered three daily food rations. Previous genetic analysis indicated that grasshoppers from FL (the low-latitude population) and GA (the high-latitude population) were phylogenetically closer to each other than to LA grasshoppers (the intermediate-latitude population). The ages at maximum titers of vitellogenin (Vg(max)) and three storage proteins that were referred to as major hemolymph proteins (MHP(max)) were used as indices of the progress of oocyte development. Age at Vg(max) was affected significantly both by diet and by population. Perhaps most importantly, age at Vg(max) was less for GA grasshoppers than for FL and LA grasshoppers; this pattern differs from the phylogenetic relationships of the populations. Age at MHP(max) was significantly affected only by diet and not by population. Hence, the regulation of these proteins may differ across populations. Finally, we found no evidence that plasticity of reproductive investment in response to food availability differs across populations (as indicated by nonsignificant interactions of population and feeding environment).  相似文献   
209.
Acylsugars present in Lycopersicon pennellii are responsible for the high levels of pest resistance often found in this wild tomato taxon. We investigated the inheritance of acylsugar contents in segregating populations of the interspecific tomato cross L. esculentum x L. pennellii and estimated correlations between leaflet acylsugar contents and the levels of mite repellence. Acylsugar contents were quantified with the Sommogy-Nelson colorimetric method in the acessions L. esculentum 'TOM-584' (P(1), low acylsugars), L. pennellii 'LA-716' (P(2), high acylsugars), in the interspecific F(1) (P(1) x P(2)) and in the F(2 )(P(1) x P(2)) generations. Mite resistance was assessed by a repellence test. Broad-sense heritability of acylsugar contents was moderately high (h(2)(b) = 0.476). Frequency distributions in the P(1), P(2), F(1) and F(2) can be explained by the action of a single major locus, with near-complete dominance of the L. esculentum allele for low-acylsugar content over the L. pennellii allele for high content. Indirect selection for high levels of acylsugars in leaflets led to correlated increases in the levels of mite repellency, indicating that acylsugars may be the main factor involved in mite resistance.  相似文献   
210.
Integrin-mediated adhesion to the extracellular matrix permits efficient growth factor-mediated activation of extracellular signal-regulated kinases (ERKs). Points of regulation have been localized to the level of receptor phosphorylation or to activation of the downstream components, Raf and MEK (mitogen-activated protein kinase/ERK kinase). However, it is also well established that ERK translocation from the cytoplasm to the nucleus is required for G1 phase cell cycle progression. Here we show that phosphorylation of the nuclear ERK substrate, Elk-1 at serine 383, is anchorage dependent in response to growth factor treatment of NIH 3T3 fibroblasts. Furthermore, when we activated ERK in nonadherent cells by expression of active components of the ERK cascade, subsequent phosphorylation of Elk-1 at serine 383 and Elk-1-mediated transactivation were still impaired compared with adherent cells. Elk-1 phosphorylation was dependent on an intact actin cytoskeleton, as discerned by treatment with cytochalasin D (CCD). Finally, expression of active MEK failed to predominantly localize ERK to the nucleus in suspended cells or adherent cells treated with CCD. These data show that integrin-mediated organization of the actin cytoskeleton regulates localization of activated ERK, and in turn the ability of ERK to efficiently phosphorylate nuclear substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号