首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   766篇
  免费   67篇
  2023年   5篇
  2022年   11篇
  2021年   29篇
  2020年   12篇
  2019年   22篇
  2018年   32篇
  2017年   20篇
  2016年   44篇
  2015年   66篇
  2014年   61篇
  2013年   74篇
  2012年   88篇
  2011年   78篇
  2010年   34篇
  2009年   25篇
  2008年   48篇
  2007年   36篇
  2006年   28篇
  2005年   31篇
  2004年   17篇
  2003年   18篇
  2002年   19篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1970年   1篇
排序方式: 共有833条查询结果,搜索用时 15 毫秒
721.
722.
Membrane fusion of the flavivirus tick-borne encephalitis virus is triggered by the mildly acidic pH of the endosome and is mediated by envelope protein E, a class II viral fusion protein. The low-pH trigger induces an oligomeric rearrangement in which the subunits of the native E homodimers dissociate and the monomeric subunits then reassociate into homotrimers. Here we provide evidence that membrane binding is mediated by the intermediate monomeric form of E, generated by low-pH-induced dissociation of the dimer. Liposome coflotation experiments revealed that association with target membranes occurred only when liposomes were present at the time of acidification, whereas pretreating virions at low pH in the absence of membranes resulted in the loss of their ability to stably attach to liposomes. With the cleavable cross-linker ethylene glycolbis(succinimidylsuccinate), it was shown that a truncated soluble form of the E protein (sE) could bind to membranes only when the dimers were free to dissociate at low pH, and binding could be blocked by a monoclonal antibody that recognizes the fusion peptide, which is at the distal tip of the E monomer but is buried in the native dimer. Surprisingly, analysis of the membrane-associated sE proteins revealed that they had formed trimers. This was unexpected because this protein lacks a sequence element in the C-terminal stem-anchor region, which was shown to be essential for trimerization in the absence of a target membrane. It can therefore be concluded that the formation of a trimeric form of sE is facilitated by membrane binding. Its stability is apparently maintained by contacts between the ectodomains only and is not dependent on sequence elements in the stem-anchor region as previously assumed.  相似文献   
723.
The SNAREs syntaxin 7, syntaxin 8, vti1b, and endobrevin/VAMP8 function in the fusion of late endosomes. Although the core complex formed by these SNAREs is very similar to the neuronal SNARE complex, it differs from the neuronal complex in that three of the four SNAREs contain extended N-terminal regions of unknown structure and function. Here we show that the N-terminal regions of syntaxin 7, syntaxin 8, and vti1b contain well folded alpha-helical domains. Multidimensional NMR spectroscopy revealed that in syntaxin 7 and vti1b, the domains form three-helix bundles resembling those of syntaxin 1, Sso1p, and Vam3p. The three-helix bundle domain of vti1b is the first of its kind identified in a SNARE outside the syntaxin family. Only syntaxin 7 adopts a closed conformation, whereas in vti1b and syntaxin 8, the N-terminal domains do not interact with the adjacent SNARE motifs. Accordingly, the rate of SNARE complex assembly is retarded about 7-fold when syntaxin 7 contains its N-terminal domain, whereas the N-terminal domains of vti1b and syntaxin 8 have no influence on assembly kinetics. We conclude that three-helix bundles represent a common fold for SNARE N-terminal domains, not restricted to the syntaxin family. However, they differ in their ability to adopt closed conformations and thus to regulate the assembly of SNARE complexes.  相似文献   
724.
Hormone-sensitive lipase (HSL) is believed to play an important role in the mobilization of fatty acids from triglycerides (TG), diglycerides, and cholesteryl esters in various tissues. Because HSL-mediated lipolysis of TG in adipose tissue (AT) directly feeds non-esterified fatty acids (NEFA) into the vascular system, the enzyme is expected to affect many metabolic processes including the metabolism of plasma lipids and lipoproteins. In the present study we examined these metabolic changes in induced mutant mouse lines that lack HSL expression (HSL-ko mice). During fasting, when HSL is normally strongly induced in AT, HSL-ko animals exhibited markedly decreased plasma concentrations of NEFA (-40%) and TG (-63%), whereas total cholesterol and HDL cholesterol levels were increased (+34%). Except for the increased HDL cholesterol concentrations, these differences were not observed in fed animals, in which HSL activity is generally low. Decreased plasma TG levels in fasted HSL-ko mice were mainly caused by decreased hepatic very low density lipid lipoprotein (VLDL) synthesis as a result of decreased NEFA transport from the periphery to the liver. Reduced NEFA transport was also indicated by a depletion of hepatic TG stores (-90%) and strongly decreased ketone body concentrations in plasma (-80%). Decreased plasma NEFA and TG levels in fasted HSL-ko mice were associated with increased fractional catabolic rates of VLDL-TG and an induction of the tissue-specific lipoprotein lipase (LPL) activity in cardiac muscle, skeletal muscle, and white AT. In brown AT, LPL activity was decreased. Both increased VLDL fractional catabolic rates and increased LPL activity in muscle were unable to provide the heart with sufficient NEFA, which led to decreased tissue TG levels in cardiac muscle. Our results demonstrate that HSL deficiency markedly affects the metabolism of TG-rich lipoproteins by the coordinate down-regulation of VLDL synthesis and up-regulation of LPL in muscle and white adipose tissue. These changes result in an "anti-atherogenic" lipoprotein profile.  相似文献   
725.
An isocratic reversed-phase high-performance liquid chromatographic method with ultraviolet detection at 205 nm has been validated for the determination of indinavir, ritonavir and lopinavir (ABT 378) in human plasma. The ritonavir analogue A-86093.0 was used as internal standard. Good chromatographic separation was achieved using a stainless steel column packed with 5 microm Phenomenex phenyl hexyl material operated at 40 degrees C, and a mobile phase consisting of acetonitrile-10 mM potassium phosphate buffer (50:50, v/v). The calibration curve for indinavir was linear over the range of 50 to 1000 microg/l while the ritonavir and lopinavir calibration curves were linear over the range of 100 to 15,000 microg/l. The lower limit of quantitations for indinavir, ritonavir and lopinavir were 50, 100 and 100 microg/l, respectively, using 500 microl of human plasma. The validation data showed that the assay is sensitive, specific and reproducible for determination of indinavir, ritonavir and lopinavir. This method is being used in a therapeutic drug monitoring service to quantitate these therapeutic agents in patients infected with human immunodeficiency virus.  相似文献   
726.
The c-MYC oncoprotein regulates various aspects of cell behaviour by modulating gene expression. Here, we report the identification of the cAMP-response-element-binding protein (CBP) as a novel c-MYC binding partner. The two proteins interact both in vitro and in cells, and CBP binds to the carboxy-terminal region of c-MYC. Importantly, CBP, as well as p300, is associated with E-box-containing promoter regions of genes that are regulated by c-MYC. Furthermore, c-MYC and CBP/p300 function synergistically in the activation of reporter-gene constructs. Thus, CBP and p300 function as positive cofactors for c-MYC. In addition, c-MYC is acetylated in cells. This modification does not require MYC box II, suggesting that it is independent of TRRAP complexes. Instead, CBP acetylates c-MYC in vitro, and co-expression of CBP with c-MYC stimulates in vivo acetylation. Functionally, this results in a decrease in ubiquitination and stabilization of c-MYC proteins. Thus, CBP and p300 are novel functional binding partners of c-MYC.  相似文献   
727.
728.
Human metabolism of the monoterpene cyclic ether 1,8-cineole was investigated in vitro and in vivo. In vitro, the biotransformation of 1,8-cineole was investigated by human liver microsomes and by recombinant cytochrome P450 enzymes coexpressed with human CYP-reductase in Escherichia coli cells. Besides the already described metabolite 2alpha-hydroxy-1,8-cineole we found another metabolite produced at high rates. The structure was identified by a comparison of its mass spectrum and retention time with the reference compounds as 3alpha-hydroxy-1,8-cineole. There was a clear correlation between the concentration of the metabolites, incubation time and enzyme content, respectively. CYP3A4/5 antibody significantly inhibited the 2alpha- and 3alpha-hydroxylation catalyzed by pooled human liver microsomes. Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for oxidation of 1,8-cineole in position three were 19 microM and 64.5 nmol/min/nmol P450 for cytochrome P450 3A4, and 141 microM and 10.9 nmol/min/nmol P450 for cytochrome P450 3A5, respectively. To our knowledge, this is the first time that 3alpha-hydroxy-1,8-cineole is described as a human metabolite of 1,8-cineole. We confirmed these in vitro results by the investigation of human urine after the oral administration of cold medication containing 1,8-cineole. In human urine we found by GC-MS analysis the described metabolites, 2alpha-hydroxy-1,8-cineole and 3alpha-hydroxy-1,8-cineole.  相似文献   
729.
The mechanism of Bax-dependent cytochrome c release is still controversial and may also depend on the actual localisation of cytochrome C: (i) we studied the distribution of cytochrome c in sub-fractions of rat kidney mitochondria and found that 10-20% of the total cytochrome c was associated at the peripheral inner membrane and to some extent organised in the contact sites. (ii) Cytochrome c concentrations in the contact site fractions varied related to surface bound hexokinase activity. It decreased upon reduction of contact sites by glycerol or specific dissociation of the VDAC-ANT complexes by bongkrekate, whereas it increased upon induction of contacts by dextran or association of VDAC-ANT complexes by atractyloside. (iii) The outer membrane pore (VDAC) acquires high capacity for hexokinase binding by interacting with the ANT. Thus, surface-attached hexokinase protein indicated the frequency of VDAC-ANT complexes and the correlation between hexokinase activity and cytochrome c suggested association of the latter to the complexes. (iv) Substances affecting exclusively the structure of either hexokinase (glucose-6P) or cytochrome c (borate) led to a decrease only of the effected protein without changing the concentration of other contact site constituents. (v) Hexokinase was furthermore used as a tool to isolate the contact site forming complex of outer membrane VDAC and inner membrane ANT from Triton-dissolved membranes. Cytochrome c remained attached to the hexokinase VDAC-ANT complexes that were reconstituted in phospholipid vesicles. (vi) The vesicles were loaded with malate and BaxDeltaC released the endogenous cytochrome c from the reconstituted complexes without forming unspecific pores for malate. BaxDeltaC targeted a cytochrome c fraction associated at the VDAC-ANT complex. The cytochrome c organisation was dependent on the actual structure of VDAC and ANT. Thus, the BaxDeltaC effect was suppressed either by hexokinase utilising glucose and ATP or by bongkrekic acid both influencing the pore and ANT structure.  相似文献   
730.
The 7-transmembrane or G protein-coupled receptors relay signals from hormones and sensory stimuli to multiple signaling systems at the intracellular face of the plasma membrane including heterotrimeric G proteins, ERK1/2, and arrestins. It is an emerging concept that 7-transmembrane receptors form oligomers; however, it is not well understood which roles oligomerization plays in receptor activation of different signaling systems. To begin to address this question, we used the angiotensin II type 1 (AT(1)) receptor, a key regulator of blood pressure and fluid homeostasis that in specific context has been described to activate ERKs without activating G proteins. By using bioluminescence resonance energy transfer, we demonstrate that AT(1) receptors exist as oligomers in transfected COS-7 cells. AT(1) oligomerization was both constitutive and receptor-specific as neither agonist, antagonist, nor co-expression with three other receptors affected the bioluminescence resonance energy transfer 2 signal. Furthermore, the oligomerization occurs early in biosynthesis before surface expression, because we could control AT(1) receptor export from the endoplasmic reticulum or Golgi by using regulated secretion/aggregation technology (RPD trade mark ). Co-expression studies of wild type AT(1) and AT(1) receptor mutants, defective in either ligand binding or G protein and ERK activation, yielded an interesting result. The mutant receptors specifically exerted a dominant negative effect on Galpha(q) activation, whereas ERK activation was preserved. These data suggest that distinctly active conformations of AT(1) oligomers can couple to each of these signaling systems and imply that oligomerization plays an active role in supporting these distinctly active conformations of AT(1) receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号