首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2012篇
  免费   120篇
  2132篇
  2024年   4篇
  2023年   15篇
  2022年   44篇
  2021年   69篇
  2020年   61篇
  2019年   53篇
  2018年   83篇
  2017年   69篇
  2016年   101篇
  2015年   153篇
  2014年   161篇
  2013年   159篇
  2012年   189篇
  2011年   200篇
  2010年   132篇
  2009年   91篇
  2008年   98篇
  2007年   99篇
  2006年   93篇
  2005年   68篇
  2004年   44篇
  2003年   45篇
  2002年   36篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1953年   1篇
排序方式: 共有2132条查询结果,搜索用时 0 毫秒
101.
TraI (DNA helicase I) is an Escherichia coli F plasmid-encoded protein required for bacterial conjugative DNA transfer. The protein is a sequence-specific DNA transesterase that provides the site- and strand-specific nick required to initiate DNA strand transfer and a 5' to 3' DNA helicase that unwinds the F plasmid to provide the single-stranded DNA that is transferred from donor to recipient. Sequence comparisons with other transesterases and helicases suggest that these activities reside in the N- and C-terminal regions of TraI, respectively. Computer-assisted secondary structure probability analysis identified a potential interdomain region spanning residues 304-309. Proteins encoded by segments of traI, whose N or C terminus either flanked or coincided with this region, were purified and assessed for catalytic activity. Amino acids 1-306 contain the transesterase activity, whereas amino acids 309-1504 contain the helicase activity. The C-terminal 252 amino acids of the 1756-amino acid TraI protein are not required for either helicase or transesterase activity. Protein and nucleic acid sequence similarity searches indicate that the occurrence of both transesterase- and helicase-associated motifs in a conjugative DNA transfer initiator protein is rare. Only two examples (other than R100 plasmid TraI) were found: R388 plasmid TrwC and R46 plasmid (pKM101) TraH, belonging to the IncW and IncN groups of broad host range conjugative plasmids, respectively. The most significant structural difference between these proteins and TraI is that TraI contains an additional region of approximately 650 residues between the transesterase domain and the helicase-associated motifs. This region is required for helicase activity.  相似文献   
102.
103.
BackgroundThe aim of this study was to evaluate the effectiveness of prophylactic corticosteroids to prevent pain flare (PF) in bone metastases treated with radiotherapy performing a meta-analysis of randomized clinical trials (RCT).Materials and methodsRCTs were identified on Medline, Embase, the Cochrane Library, and the proceedings of annual meetings through June 2020. We followed the PRISMA and MOOSE guidelines. A meta-analysis was performed to assess if corticosteroids reduce the PF, pain progression, and the mean of days with PF compared with the placebo. A p-value < 0.05 was considered significant.ResultsThree RCTs with a total of 713 patients treated were included. The corticosteroids reduced the occurrence of early PF 20.5% (51/248) versus 32% (80/250) placebo, OR = 0.55 (95% CI: 0.36–0.82, p = 0.002). The mean days of PF were reduced to 1.6 days (95% CI: 1.3–1.9, p = 0.0001). Prophylactic corticosteroids had more patients with no PF and no pain progression, OR = 1.63 (95% CI: 1.14–2.32, p = 0.007). No significant corticosteroids effect was observed for pain progression (p = ns) and late PF occurrence (p = ns).ConclusionProphylactic corticosteroids reduced the incidence of early PF, the days with PF, resulting in a superior rate of patients with no PF and no pain progression, but with no significant benefit for reducing pain progression or late PF occurrence.  相似文献   
104.
HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.  相似文献   
105.
Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.  相似文献   
106.

Aims

The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice.

Main methods

Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRβ, IRS-1 and Akt were determined by Western blot analyses.

Key findings

Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1ser307 were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels.

Significance

We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic–therapeutic agent against obesity-related complications.  相似文献   
107.
Bioprocess and Biosystems Engineering - This work is based on the importance of monitoring the thermodynamic variables of sugarcane juice fermentation by Saccharomyces cerevisiae, using a numerical...  相似文献   
108.
Tetraploid (2n = 4x = 40) races of Paspalum notatum Flüggé are important natural forage grasses for the tropical and subtropical areas of the Americas. Almost all natural accessions reproduce by obligate aposporous apomixis. Previous work on the species allowed the identification of several molecular markers completely linked to apospory, one component of apomictic reproduction. Moreover, after a fingerprinting characterization of a germplasm collection, 11 amplified fragment length polymorphism (AFLP) markers exclusive to apomictic accessions were detected. The objectives of this work were (1) to validate the presence of molecular markers linked to apospory in tetraploid races of different geographic origins, (2) to determine if markers specific to apomictic accessions were associated with the mode of reproduction, and (3) to develop single-locus markers of apospory that can be used for marker-assisted selection. Thirteen natural apomictic accessions were analyzed. Moreover, the parental plants Q4188 (non-aposporous) and Q4117 (aposporous) and 44 F1 progenies (36 non-aposporous, 8 aposporous) derived from them were used as a validation population. Nine markers [two random amplification of polymorphic DNA (RAPD) and seven AFLP] 100% linked to apospory in Q4117 were tested. Amplification reactions with the corresponding primers showed that all markers were present in the 13 aposporous (apomictic) accessions, but were absent in the non-aposporous controls. On the other hand, linkage analysis of the 11 AFLP markers specific to the apomictic accessions showed that all of them were linked in coupling to apospory (r = 0.00, LOD 13.245). Based on one AFLP (E36M37c), two sequence characterized amplification region (SCAR) markers (SPNA1 and SPNA2) co-segregating with the trait and present in the 13 apomictic accessions were developed. The presence of markers associated with apospory was conserved among tetraploid accessions of different geographic origins. Moreover, the single-locus markers SPNA1 and SPNA2 could be used for routine marker-assisted selection in hybrid populations segregating for apospory and to facilitate the isolation of apospory-related genes.  相似文献   
109.
Plants optimize water use and carbon assimilation via transient regulation of stomata resistance and by limiting hydraulic conductivity in a long-term response of xylem anatomy. We postulated that without effective hydraulic regulation plants would permanently restrain water loss and photosynthetic productivity under salt stress conditions. We compared wild-type tomatoes to a transgenic type (TT) with impaired stomatal control. Gas exchange activity, biomass, starch content, leaf area and root traits, mineral composition and main stems xylem anatomy and hydraulic conductivity were analyzed in plants exposed to salinities of 1 and 4 dS m−1 over 60 days. As the xylem cannot easily readjust to different environmental conditions, shifts in its anatomy and the permanent effect on plant hydraulic conductivity kept transpiration at lower levels under unstressed conditions and maintained it under salt-stress, while sustaining higher but inefficient assimilation rates, leading to starch accumulation and decreased plant biomass, leaf and root area and root length. Narrow conduits in unstressed TT plants were related to permanent restrain of hydraulic conductivity and plant transpiration. Under salinity, TT plants followed the atmospheric water demand, sustained similar transpiration rate from unstressed to salt-stressed conditions and possibly maintained hydraulic integrity, due to likely impaired hydraulic regulation, wider conduits and higher hydraulic conductivity. The accumulation of salts and starch in the TT plants was a strong evidence of salinity tolerance via osmotic regulation, also thought to help to maintain the assimilation rates and transpiration flux under salinity, although it was not translated into higher growth.  相似文献   
110.
Brucella, the etiological agent of animal and human brucellosis, is a bacterium with the capacity to modulate the inflammatory response. Cyclic β-1,2-glucan (CβG) is a virulence factor key for the pathogenesis of Brucella as it is involved in the intracellular life cycle of the bacteria. Using comparative studies with different CβG mutants of Brucella, cgs (CβG synthase), cgt (CβG transporter) and cgm (CβG modifier), we have identified different roles for this polysaccharide in Brucella. While anionic CβG is required for bacterial growth in low osmolarity conditions, the sole requirement for a successful Brucella interaction with mammalian host is its transport to periplasmic space. Our results uncover a new role for CβG in promoting splenomegaly in mice. We showed that CβG-dependent spleen inflammation is the consequence of massive cell recruitment (monocytes, dendritics cells and neutrophils) due to the induction of pro-inflammatory cytokines such as IL-12 and TNF-α and also that the reduced splenomegaly response observed with the cgs mutant is not the consequence of changes in expression levels of the characterized Brucella PAMPs LPS, flagellin or OMP16/19. Complementation of cgs mutant with purified CβG increased significantly spleen inflammation response suggesting a direct role for this polysaccharide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号