首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1952篇
  免费   112篇
  2024年   4篇
  2023年   15篇
  2022年   44篇
  2021年   69篇
  2020年   61篇
  2019年   51篇
  2018年   83篇
  2017年   69篇
  2016年   101篇
  2015年   153篇
  2014年   161篇
  2013年   155篇
  2012年   183篇
  2011年   192篇
  2010年   130篇
  2009年   90篇
  2008年   95篇
  2007年   93篇
  2006年   89篇
  2005年   63篇
  2004年   40篇
  2003年   42篇
  2002年   31篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1953年   1篇
排序方式: 共有2064条查询结果,搜索用时 15 毫秒
161.
162.
Several Gram-negative bacterial pathogens have developed type III secretion systems (T3SSs) to deliver virulence proteins directly into eukaryotic cells in a process essential for many diseases. The type III secretion processes require customized chaperones with high specificity for binding partners, thus providing the secretion to occur. Due to the very low sequence similarities among secretion chaperones, annotation and discrimination of a great majority of them is extremely difficult and a task with low scores even if genes are encountered that codify for small (<20 kDa) proteins with low pI and a tendency to dimerise. Concerning about this, herein, we present structural features on two hypothetical T3SSs chaperones belonging to plant pathogen Xanthomonas axonopodis pv. citri and suggest how low resolution models based on Small Angle X-ray Scattering patterns can provide new structural insights that could be very helpful in their analysis and posterior classification.  相似文献   
163.
The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood. We show that ubiquitination factor E4B (UBE4B), an E3 and E4 ubiquitin ligase, physically interacts with p53 and Hdm2 (also known as Mdm2 in mice). UBE4B promotes p53 polyubiquitination and degradation and inhibits p53-dependent transactivation and apoptosis. Notably, silencing UBE4B expression impairs xenotransplanted tumor growth in a p53-dependent manner and overexpression of UBE4B correlates with decreased expression of p53 in these tumors. We also show that UBE4B overexpression is often associated with amplification of its gene in human brain tumors. Our data indicate that amplification and overexpression of UBE4B represent previously undescribed molecular mechanisms of inactivation of p53 in brain tumors.  相似文献   
164.
Extensive research carried out over the last 100 years has established that the fat-soluble organic compound vitamin A plays crucial roles in early development, organogenesis, cell proliferation, differentiation and apoptosis as well as in tissue homeostasis. Given its importance during development, the delivery of vitamin A to the embryo is very tightly regulated with perturbations leading to severe malformations. This review discusses the roles of vitamin A during human development and the molecular mechanisms controlling its biological effects, hence bridging the gap between human development and molecular genetic work carried out in animal models. Vitamin A delivery during pregnancy and its developmental teratology in humans are thus discussed alongside work on model organisms, such as chicken or mice, revealing the molecular layout and functions of vitamin A metabolism and signaling. We conclude that, during development, vitamin A-derived signals are very tightly controlled in time and space and that this complex regulation is achieved by elaborate autoregulatory loops and by sophisticated interactions with other signaling cascades.  相似文献   
165.
The strategies that allow Brucella abortus to persist for years inside macrophages subverting host immune responses are not completely understood. Immunity against this bacterium relies on the capacity of IFN-γ to activate macrophages, endowing them with the ability to destroy intracellular bacteria. We report here that infection with B. abortus down-modulates the expression of the type I receptor for the Fc portion of IgG (FcγRI, CD64) and FcγRI-restricted phagocytosis regulated by IFN-γ in human monocytes/macrophages. Both phenomena were not dependent on bacterial viability, since they were also induced by heat-killed B. abortus (HKBA), suggesting that they were elicited by a structural bacterial component. Accordingly, a prototypical B. abortus lipoprotein (L-Omp19), but not its unlipidated form, inhibited both CD64 expression and FcγRI-restricted phagocytosis regulated by IFN-γ. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited CD64 expression, indicating that any Brucella lipoprotein could down-modulate CD64 expression and FcγRI-restricted phagocytosis. Pre-incubation of monocytes/macrophages with anti-TLR2 mAb blocked the inhibition of the CD64 expression mediated by HKBA and L-Omp19. These results, together with our previous observations establish that B. abortus utilizes its lipoproteins to inhibit the monocytes/macrophages activation mediated by IFN-γ and to subvert host immunonological responses.  相似文献   
166.
The use of artificial implants provides a palliative or permanent solution for individuals who have lost some bodily function through disease, an accident or natural wear. This functional loss can be compensated for by the use of medical devices produced from special biomaterials. Titanium alloy (Ti-6Al-4V) is a well-established primary metallic biomaterial for orthopedic implants, but the toxicity of the chemical components of this alloy has become an issue of concern. In this work, we used the MTT assay and micronucleus assay to examine the cytotoxicity and genotoxicity, respectively, of an extract obtained from this alloy. The MTT assay indicated that the mitochondrial activity and cell viability of CHO-K1 cells were unaffected by exposure to the extract. However, the micronucleus assay revealed DNA damage and an increase in micronucleus frequency at all of the concentrations tested. These results show that ions released from Ti-6Al-4V alloy can cause DNA and nuclear damage and reinforce the importance of assessing the safety of metallic medical devices constructed from biomaterials.  相似文献   
167.
Improved understanding of the dynamics of host immune responses and viral evolution is critical for effective HIV-1 vaccine design. We comprehensively analyzed Cytotoxic T-lymphocyte (CTL)-viral epitope dynamics in an antiretroviral therapy-naïve subject over the first four years of HIV-1 infection. We found that CTL responses developed sequentially and required constant antigenic stimulation for maintenance. CTL responses exerting strong selective pressure emerged early and led to rapid escape, proliferated rapidly and were predominant during acute/early infection. Although CTL responses to a few persistent epitopes developed over the first two months of infection, they proliferated slowly. As CTL epitopes were replaced by mutational variants, the corresponding responses immediately declined, most rapidly in the cases of strongly selected epitopes. CTL recognition of epitope variants, via cross-reactivity and de novo responses, was common throughout the period of study. Our data demonstrate that HIV-specific CTL responses, especially in the critical acute/early stage, were focused on regions that are prone to escape. Failure of CTL responses to strongly target functional or structurally critical regions of the virus, as well as the sequential cascade of CTL responses, followed closely by viral escape and decline of the corresponding responses, likely contribute to a lack of sustainable viral suppression. Focusing early and rapidly proliferating CTL on persistent epitopes may be essential for durable viral control in HIV-1 infection.  相似文献   
168.
Angiostrongylus costaricensis is a nematode helminth that causes an intestinal acute inflammatory process known as abdominal angiostrongyliasis, which is a poorly understood human disease occurring in Latin America. Our aim was to study the proteomic profiles of adult parasites focusing on immunogenic proteins. Total cellular extracts from both genders showed similar 2-DE profiles, with 60% of all protein spots focused between pH 5-7 and presenting molecular masses from 20.1 to 66 kDa. A total of 53 different dominant proteins were identified in our dataset and were mainly associated with the following over-represented Gene Ontology Biological Process terms: "macromolecule metabolic process", "developmental process", "response to stress", and "biological regulation". Female and male immunoblots showed similar patterns of reactive proteins. Immunoreactive spots identified by MALDI-PSD were found to represent heat shock proteins, a putative abnormal DAuer Formation family member, and galectins. To date, very few biochemical analyses have focused on the nematode Angiostrongylus costaricensis. As such, our results contribute to a better understanding of its biology and the mechanisms underlying the host-parasite relationship associated with this species. Moreover, our findings represent a first step in the search for candidate proteins for diagnostic assays and the treatment of this parasitic infection.  相似文献   
169.
170.
The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26-27 and is highly polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70-80% decrease in MAGE-C1/CT7 protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p<0.05). When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p<0.01). Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in comparison with bortezomib-treated controls (p<0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be a strategy for future therapies in MM, in particular in combination with proteasome inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号