首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4005篇
  免费   408篇
  国内免费   7篇
  4420篇
  2023年   33篇
  2022年   48篇
  2021年   119篇
  2020年   63篇
  2019年   69篇
  2018年   81篇
  2017年   77篇
  2016年   143篇
  2015年   191篇
  2014年   205篇
  2013年   215篇
  2012年   291篇
  2011年   283篇
  2010年   200篇
  2009年   160篇
  2008年   262篇
  2007年   237篇
  2006年   247篇
  2005年   217篇
  2004年   178篇
  2003年   181篇
  2002年   153篇
  2001年   46篇
  2000年   26篇
  1999年   38篇
  1998年   34篇
  1997年   22篇
  1996年   30篇
  1995年   34篇
  1994年   22篇
  1993年   19篇
  1992年   23篇
  1991年   25篇
  1990年   17篇
  1989年   16篇
  1988年   20篇
  1987年   11篇
  1986年   20篇
  1985年   17篇
  1984年   24篇
  1982年   20篇
  1981年   14篇
  1980年   25篇
  1978年   17篇
  1977年   19篇
  1976年   14篇
  1974年   19篇
  1973年   13篇
  1971年   13篇
  1970年   11篇
排序方式: 共有4420条查询结果,搜索用时 19 毫秒
101.
The target of rapamycin (TOR) complex 1 (TORC1) signaling pathway is a critical regulator of translation and cell growth. To identify novel components of this pathway, we performed a kinome-wide RNA interference (RNAi) screen in Drosophila melanogaster S2 cells. RNAi targeting components of the p38 stress-activated kinase cascade prevented the cell size increase elicited by depletion of the TOR negative regulator TSC2. In mammalian and Drosophila tissue culture, as well as in Drosophila ovaries ex vivo, p38-activating stresses, such as H2O2 and anisomycin, were able to activate TORC1. This stress-induced TORC1 activation could be blocked by RNAi against mitogen-activated protein kinase kinase 3 and 6 (MKK3/6) or by the overexpression of dominant negative Rags. Interestingly, p38 was also required for the activation of TORC1 in response to amino acids and growth factors. Genetic ablation either of p38b or licorne, its upstream kinase, resulted in small flies consisting of small cells. Mutants with mutations in licorne or p38b are nutrition sensitive; low-nutrient food accentuates the small-organism phenotypes, as well as the partial lethality of the p38b null allele. These data suggest that p38 is an important positive regulator of TORC1 in both mammalian and Drosophila systems in response to certain stresses and growth factors.The target of rapamycin, TOR, is a highly conserved serine/threonine kinase that is a critical regulator of cell growth. It is a core component of two signaling complexes, TORC1 and TORC2 (60, 74). TORC1 is defined by the presence of Raptor in the complex, while TORC2 contains Rictor. Rictor and Raptor are mutually exclusive. Activation of the TORC1 pathway leads to increased protein translation, increased cell size, and increased proliferation, making this pathway an important target for emerging cancer therapies. Rapamycin is an inhibitor of TORC1 that is commonly used as an immunosuppressant following kidney transplantation (51). At least three analogs of rapamycin are currently being tested in solid and hematological tumors and have shown some promising results (21).The TORC1 pathway responds to numerous inputs, sensing both the desirability of and the capacity for growth. Many of these pathways control TORC1 signaling through phosphorylation of the tuberous sclerosis protein TSC2. TSC2 associates with TSC1 to form a heterodimeric GTPase-activating protein complex (GAP) that inactivates the small GTPase Rheb (24, 29, 67). While the exact molecular mechanism remains a topic of debate, activation of Rheb promotes the kinase activity of TORC1 (24, 29, 67). Rheb is required for the activation of TORC1 in response to both amino acids and growth factors (55, 62). In Drosophila melanogaster, mutation of either TOR or Rheb inhibits growth, leading to reduced body size and reduced cell size in mutant clones (42, 64). Mutation of either TSC1 or TSC2 has the predicted opposite effect, as tissue deficient for either of these proteins overgrows and contains large cells (49, 66).TORC1 is activated via the phosphatidylinositol 3′ kinase (PI3′K) pathway by growth-promoting mitogens, such as insulin and growth factors. Drosophila mutants with mutations of PI3′K pathway components have size phenotypes similar to those of the TOR and Rheb mutants (71). In mammalian cells, the PI3′K-mediated activation of TORC1 occurs at least in part through the phosphorylation of TSC2 by the PI3′K target AKT (30, 50). Interestingly, mutation of these residues in Drosophila has no impact on TSC2 function in vivo, suggesting that there may be other mechanisms through which PI3′K can activate Drosophila TOR (20). Recent work has suggested that the proline-rich AKT substrate PRAS40 may provide part of this link (23, 59, 69, 70). In addition, signaling through RAS activates extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK), which can phosphorylate TSC2 and Raptor to activate TORC1 (13, 40, 56). There are also likely to be additional mechanisms through which growth factors activate Drosophila TOR that have not yet been identified.TORC1 activity is also controlled by the intracellular building blocks necessary to support cellular growth. The energy-sensing AMP-activated protein kinase (AMPK) pathway relays information about the energy status of the cell to TORC1 by phosphorylating TSC2. Unlike the inactivating phosphorylation of TSC2 by Akt, phosphorylation of TSC2 by AMPK promotes the GAP activity of the TSC complex (31). AMPK also phosphorylates Raptor, leading to decreased TORC1 activity (28). Thus, when energy levels are low, active AMPK inhibits TORC1.Amino acids also activate the TORC1 pathway, through a mechanism that requires Rheb, as well as the type III PI3′K VPS34 and the serine/threonine kinase mitogen-activated protein kinase kinase kinase kinase 3 (MAP4K3) (11, 22, 43). TORC1 thereby integrates information about the availability of amino acids and the amount of energy available for growth with growth factor signaling. Given its ancient function in adapting growth rates to environmental conditions, it is likely that TOR responds to a variety of stimuli, suggesting that many TOR control mechanisms remain to be uncovered. The Rag family of Ras-related small GTPases has recently been identified as a key component of the amino acid-sensing pathway, acting in parallel to Rheb (34, 58). Rag GTPases form heterodimers; RagA or RagB interacts with RagC or RagD. RagA and RagB are active when GTP bound, while RagC and RagD are active when bound to GDP (34, 58). Activation of the Rags by amino acids results in TOR relocalization to Rab7-containing vesicles (58). While the function of these vesicles in TORC1 signaling remains unclear, this relocalization is associated with increased TORC1 activity.TORC1 controls cell growth and translation through the phosphorylation and activation of components of the translational machinery, such as S6 kinase (S6K) and 4EBP1, an inhibitor of eukaryotic translation initiation factor 4E (eIF4E) activity (reviewed in reference 27). S6K phosphorylates the S6 ribosomal subunit, thereby increasing translation. Mice deficient for S6K1 are small and have small pancreatic beta cells and a correspondingly low level of circulating insulin (45). Mutation of the phosphorylation sites on S6 results in a similar phenotype, with small beta cells and fibroblasts (57). In Drosophila, mutation of S6K again reduces both cell and organism size (42), as does the overexpression of 4EBP (41).Interestingly, while mutation of the TORC1 pathway in mammalian cells reduces cell size by 10 to 15%, ablation of core TORC1 pathway components in Drosophila cells can affect cell size by up to 40% (73). In an attempt to identify novel components of the TORC1 pathway, we undertook an RNA interference (RNAi)-based screen of Drosophila S2 cells. We reasoned that the extreme size phenotypes observed in Drosophila cells upon TORC1 manipulations would facilitate the identification of modulators. In order to increase the likelihood of isolating novel regulators of TOR, we uncoupled TOR activity from many of its known nutritional controls by depleting TSC2 and screened for double-stranded RNAs (dsRNAs) that could reverse the cell size increase elicited by loss of TSC2. Depletion of multiple components of the p38 pathway was found to revert the TSC2 RNAi-induced cell size increase. Furthermore, activation of p38 is necessary and sufficient for the activation of TOR. Strikingly, mutation of components of the stress-activated p38 pathway in Drosophila has a similar phenotype to mutations in the TOR and insulin signaling pathway: a cell-autonomous cell size decrease, reduced body size, and a sensitization to the effects of nutritional stress.  相似文献   
102.
Herbivores and pathogens with acute host specificity may promote high tree diversity in tropical forests by causing distance- and density-dependent mortality of seedlings, but evidence is scarce. Although Lepidoptera larvae are the most abundant and host-specific guild of herbivores in these forests, their impact upon seedling distributions remains largely unknown. A firm test of the mechanism underpinning the Janzen–Connell hypothesis is difficult, even for a single tree species, because it requires more than just manipulating seeds and seedlings and recording their fates. Experimental tests require: (1) an insect herbivore that is identified and highly specialised, (2) linkage to an in situ measure (or prevention) of herbivory, and (3) evaluation and confirmation among many conspecific adult trees across years. Here we present experimental evidence for a spatially explicit interaction between newly germinating seedlings of a Neotropical emergent tree, big-leaf mahogany (Swietenia macrophylla, Meliaceae), and caterpillars of a noctuid moth (Steniscadia poliophaea). In the understory of a southeastern Amazon forest, the proportion of attacks, leaf area lost, and seedling mortality due to this specialised herbivore peaked near Swietenia trees, but declined significantly with increasing distance from mature fruiting trees, as predicted by the Janzen–Connell hypothesis. We conclude that long-distance dispersal events (>50 m) provided an early survival advantage for Swietenia seedlings, and propose that the role of larval Lepidoptera as Janzen–Connell vectors may be underappreciated in tropical forests.  相似文献   
103.
104.
Egg mass shows large intraspecific variation in birds and is repeatable within individuals. The mechanisms underlying this variation are unknown. We hypothesized that measures of egg quality (the mass of yolk protein, yolk lipid, and albumen protein) would be positively correlated with the plasma pools of the yolk precursor vitellogenin, and the masses of the oviduct, metabolic machinery (liver, heart, lungs, kidneys, gizzard, small intestine and pancreas), and endogenous stores of protein and lipid. We tested these predictions in European Starlings Sturnus vulgaris collected at the peak of egg production effort. In contrast to our predictions, both yolk protein and yolk lipid were negatively correlated with plasma vitellogenin levels. Albumen protein was positively related to oviduct mass, but other aspects of body composition failed to explain variation in egg quality. Hence, while we observed correlations between egg composition and peripheral systems (circulating precursor pools and the oviduct), we found no evidence that egg quality is determined by more general processes, i.e., the supply and processing of nutrients.  相似文献   
105.
Intestinal absorption of dietary calcium is regulated by 1,25-dihydroxycholecalciferol (1,25(OH)(2)D(3)) in humans and in experimental animals but interspecies differences in responsiveness to 1,25(OH)(2)D(3) are found, possibly due to differences in the promoters of genes for intestinal calcium transport proteins or of the Vitamin D receptor (VDR). The epithelial calcium transporter, known as ECAC2 or CAT1, the product of the TRPV6 gene expressed in proximal intestinal enterocytes, is the first step in calcium absorption and studies in mice have shown that its expression is Vitamin D-dependent. In contrast in man, we showed that duodenal TRPV6 mRNA expression was independent of blood 1,25(OH)(2)D(3), although in Caco-2 cells, 1,25(OH)(2)D(3)-dependent changes have been demonstrated. We sought to explain these findings. A consensus Vitamin D response element in the mouse gene is absent in the human gene. We re-analysed our duodenal expression data according to a CDX2-site polymorphism in the VDR promoter. Mean TRPV6 expression was the same, but there was evidence of different responsiveness to 1,25(OH)(2)D(3). In the GG genotype group, but not the AG, duodenal TRPV6 expression increased with 1,25(OH)(2)D(3). We postulate that lower levels of expression of VDR in the GG group produce greater sensitivity to 1,25(OH)(2)D(3).  相似文献   
106.
Ferrioxamine-Mediated Iron(III) Utilization by Salmonella enterica   总被引:1,自引:0,他引:1       下载免费PDF全文
Utilization of ferrioxamines as sole sources of iron distinguishes Salmonella enterica serotypes Typhimurium and Enteritidis from a number of related species, including Escherichia coli. Ferrioxamine supplements have therefore been used in preenrichment and selection media to increase the bacterial growth rate while selectivity is maintained. We characterized the determinants involved in utilization of ferrioxamines B, E, and G by S. enterica serotype Typhimurium by performing siderophore cross-feeding bioassays. Transport of all three ferric siderophores across the outer membrane was dependent on the FoxA receptor encoded by the Fur-repressible foxA gene. However, only the transport of ferrioxamine G was dependent on the energy-transducing protein TonB, since growth stimulation of a tonB strain by ferrioxamines B and E was observed, albeit at lower efficiencies than in the parental strain. Transport across the inner membrane was dependent on the periplasmic binding protein-dependent ABC transporter complex comprising FhuBCD, as has been reported for other hydroxamate siderophores of enteric bacteria. The distribution of the foxA gene in the genus Salmonella, as indicated by DNA hybridization studies and correlated with the ability to utilize ferrioxamine E, was restricted to subspecies I, II, and IIIb, and this gene was absent from subspecies IIIa, IV, VI, and VII (formerly subspecies IV) and Salmonella bongori (formerly subspecies V). S. enterica serotype Typhimurium mutants with either a transposon insertion or a defined nonpolar frameshift (+2) mutation in the foxA gene were not able to utilize any of the three ferrioxamines tested. A strain carrying the nonpolar foxA mutation exhibited a significantly reduced ability to colonize rabbit ileal loops compared to the foxA+ parent. In addition, a foxA mutant was markedly attenuated in mice inoculated by either the intragastric or intravenous route. Mice inoculated with the foxA mutant were protected against subsequent challenge by the foxA+ parent strain.  相似文献   
107.
A study of the stable isotope composition (δ18O, δ13C) of biogenic (ostracod, mollusc) and authigenic carbonates in the Ballagan Formation, Lower Carboniferous of Scotland, coupled with evidence from sedimentology and associated fossil fauna and flora, supports the argument that this formation was deposited in a coastal flood plain setting, in brackish (0.5 < 30‰ NaCl) and hypersaline (> 40‰ NaCl) waters, but in the absence of persistent normal marine conditions. The oxygen isotope data from the Ballagan Formation divide into three clusters: a diagenetic field defined by low δ18O (< − 11‰ VPDB); an intermediary field (δ18O − 11‰ to − 9‰) composed of a mixture of known primary and secondary (diagenetic) carbonates; and samples within the range of − 9‰ to − 4‰ which, as far as we can ascertain, are largely unaltered. No samples give typical Early Carboniferous δ18O marine values. Average marine carbonates from Europe have δ18O between − 4‰ to − 3‰. The Ballagan Formation carbonates were probably deposited in evaporated freshwater and/or brackish water. This conclusion is supported by the presence of evaporites (gypsum, anhydrite, halite pseudomorphs) and common desiccation-cracked mudstone surfaces throughout the Ballagan Formation, suggesting conditions of fluctuating salinity in ephemeral bodies of water. The stable isotope data support the notion that the ostracod assemblages of the Ballagan Formation were colonising brackish water and hypersaline ecologies on a coastal flood plain during the Early Carboniferous, a stage of development that may have encouraged their colonisation of fully non-marine (limnetic) environments during the later Carboniferous. The ostracods include cytherellacean and kloedenellacean species known from marginal marine sites elsewhere, but probably tolerant of brackish water, podocopid species such as ‘Bythocyprisaequalis that may have been adapted for brackish water settings on coastal flood plains (ephemeral lakes and lagoons), and paraparchitacean-dominated assemblages that may signal harsh (hypersaline or desiccating) environments.  相似文献   
108.
Free‐living marine nematode communities of the Larsen B embayment at the eastern Antarctic Peninsula were investigated to provide insights on their response and colonization rate after large‐scale ice‐shelf collapse. This study compares published data on the post‐collapse situation from 2007 with new material from 2011, focusing on two locations in the embayment that showed highly divergent communities in 2007 and that are characterized by a difference in timing of ice‐shelf breakup. Data from 2007 exposed a more diverse community at outer station B.South, dominated by the genus Microlaimus. On the contrary, station B.West in the inner part of Larsen B was poor in both numbers of individuals and genera, with dominance of a single Halomonhystera species. Re‐assessment of the situation in 2011 showed that communities at both stations diverged even more, due to a drastic increase in Halomonhystera at B.West compared to relatively little change at B.South. On a broader geographical scale, it seems that B.South gradually starts resembling other Antarctic shelf communities, although the absence of the genus Sabatieria and the high abundance of Microlaimus still set it apart nine years after the main Larsen B collapse. In contrast, thriving of Halomonhystera at B.West further separates its community from other Antarctic shelf areas.  相似文献   
109.
Benign prostatic hyperplasia (BPH) is the most common adenoma in old men. Tomatoes are a rich source of bioactive compounds that, as well as selenium (Se), possess antioxidant and antiproliferative activity. The aim was to evaluate the therapeutic effect of Se in combination with a tomato extract in aged rats with BPH. Aged male Wistar rats were divided in the following groups (n = 10 rats/group): Control (C), BPH, BPH + Finasteride (BPH + F), BPH + Tomato Lipidic Extract (BPH + E), BPH + Selenium (BPH + S) and BPH plus E plus S (BPH + E + S). After 4 weeks of treatment, prostate weight, diuresis, antioxidants enzymes, prooxidants and inflammatory markers, growth factors and androgens were determined. BPH + E + S reduced prostate weight by 59.29% and inhibited growth by 99.35% compared to BPH + F which only decreased weight and inhibited growth by 15.31% and 57.54%, respectively. Prooxidant markers were higher with BPH + F (49.4% higher vs. BPH), but BPH + E + S decreased these markers (94.27% vs. BPH) and increased antioxidant activity. Finally, diuresis was higher with the BPH + E + S combination and markers of inflammation and growth factors were significantly lower with respect to BPH + F. Our findings provide a beneficial and protective therapeutic option of E + S directed against androgens, oxidative stress and inflammation that regulates cell proliferation in the prostate gland.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号