首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3997篇
  免费   402篇
  国内免费   6篇
  2023年   29篇
  2022年   40篇
  2021年   119篇
  2020年   63篇
  2019年   69篇
  2018年   81篇
  2017年   77篇
  2016年   143篇
  2015年   191篇
  2014年   205篇
  2013年   215篇
  2012年   291篇
  2011年   283篇
  2010年   200篇
  2009年   161篇
  2008年   262篇
  2007年   237篇
  2006年   247篇
  2005年   217篇
  2004年   178篇
  2003年   181篇
  2002年   153篇
  2001年   46篇
  2000年   26篇
  1999年   40篇
  1998年   33篇
  1997年   22篇
  1996年   29篇
  1995年   34篇
  1994年   24篇
  1993年   19篇
  1992年   23篇
  1991年   25篇
  1990年   17篇
  1989年   16篇
  1988年   20篇
  1987年   11篇
  1986年   20篇
  1985年   17篇
  1984年   24篇
  1982年   20篇
  1981年   14篇
  1980年   25篇
  1978年   17篇
  1977年   19篇
  1976年   13篇
  1974年   18篇
  1973年   13篇
  1971年   13篇
  1970年   11篇
排序方式: 共有4405条查询结果,搜索用时 15 毫秒
101.
Since the identification of the apolipoprotein E (apoE) *ε4 allele as a major genetic risk factor for late-onset Alzheimer's disease, significant efforts have been aimed at elucidating how apoE4 expression confers greater brain amyloid-β (Aβ) burden, earlier disease onset and worse clinical outcomes compared to apoE2 and apoE3. ApoE primarily functions as a lipid carrier to regulate cholesterol metabolism in circulation as well as in the brain. However, it has also been suggested to interact with hydrophobic Aβ peptides to influence their processing in an isoform-dependent manner. Here, we review evidence from in vitro and in vivo studies extricating the effects of the three apoE isoforms, on different stages of the Aβ processing pathway including synthesis, aggregation, deposition, clearance and degradation. ApoE4 consistently correlates with impaired Aβ clearance, however data regarding Aβ synthesis and aggregation are conflicting and likely reflect inconsistencies in experimental approaches across studies. We further discuss the physical and chemical properties of apoE that may explain the inherent differences in activity between the isoforms. The lipidation status and lipid transport function of apoE are intrinsically linked with its ability to interact with Aβ. Traditionally, apoE-oriented therapeutic strategies for Alzheimer's disease have been proposed to non-specifically enhance or inhibit apoE activity. However, given the wide-ranging physiological functions of apoE in the brain and periphery, a more viable approach may be to specifically target and neutralise the pathological apoE4 isoform.  相似文献   
102.
Sex differences in animal coloration often result from sex‐dependent regulatory mechanisms. Still, some species exhibit incomplete sexual dimorphism as females carry a rudimentary version of a costly male trait, leading to intralocus sexual conflict. The underlying physiology and condition dependence of these traits can inform why such conflicts remain unresolved. In eastern fence lizards (Sceloporus undulatus), blue iridophore badges are found in males and females, but melanin pigmentation underneath and surrounding badges is male‐exclusive. We track color saturation and area of badges across sexual maturity, and their relationship to individual quality (body condition and immunocompetence) and relevant hormones (testosterone and corticosterone). Saturation and testosterone were positively correlated in both sexes, but hormone and trait had little overlap between males and females. Saturation was correlated with body condition and immunocompetence in males but not in females. Co‐regulation by androgens may have released females from resource allocation costs of color saturation, even when in high condition. Badge area was independent of testosterone, but associated with low corticosterone in females, indicating that a nonsex hormone underlies incomplete sexual dimorphism. Given the evidence in this species for female reproductive costs associated with ornamentation, this sex‐nonspecific regulation of an honest signal may underlie intralocus sexual conflict.  相似文献   
103.
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.  相似文献   
104.
Julian E. Andrews 《Ichnos》2013,20(4):247-253
The Kilmaluag Formation of the Great Estuarine Group (Middle Jurassic) of Scotland represents deposition of mixed carbonate and clastic sediments in a low‐salinity coastal lagoon to floodplain lake setting. Large, unusual trace fossils occur at two horizons within the formation. One type consists of platelike structures about 50 cm in diameter, which are found on wave‐rippled sandstone. These structures, strikingly similar to burrows produced by modern mudskippers, are assigned to fish that shallowly burrowed into the lagoon‐shore sediment.

The second type of burrows, found in brecciated, dolomitic limestones, are pipelike, about 4 to 7 cm in diameter and as much as 50 cm deep. One example has a chamber at the base of the pipe. Although most features of these structures appear similar to modern lungfish burrows, the chamber is most similar to structures produced by modern crayfish. The animal probably burrowed into the moist, mudflat sediment to escape desiccation during seasonal aridity.  相似文献   
105.
Miro is a highly conserved calcium‐binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified ‘hidden’ EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide‐sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand–cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation‐dependent regulation of mitochondrial function by Miro.  相似文献   
106.
Higher levels of macrophage inhibitory cytokine‐1, also known as growth differentiation factor 15 (MIC‐1/GDF15), are associated with adverse health outcomes and all‐cause mortality. The aim of this study was to examine the relationships between MIC‐1/GDF15 serum levels and global cognition, five cognitive domains, and mild cognitive impairment (MCI), at baseline (Wave 1) and prospectively at 2 years (Wave 2), in nondemented participants aged 70–90 years. Analyses were controlled for age, sex, education, Framingham risk score, history of cerebrovascular accident, acute myocardial infarction, angina, cancer, depression, C‐reactive protein, tumor necrosis factor‐α, interleukins 6 and 12, and apolipoprotein ε4 genotype. Higher MIC‐1/GDF15 levels were significantly associated with lower global cognition at both waves. Cross‐sectional associations were found between MIC‐1/GDF15 and all cognitive domains in Wave 1 (all < 0.001) and between processing speed, memory, and executive function in Wave 2 (all < 0.001). Only a trend was found for the prospective analyses, individuals with high MIC‐1/GDF15 at baseline declined in global cognition, executive function, memory, and processing speed. However, when categorizing MIC‐1/GDF15 by tertiles, prospective analyses revealed statistically significant lower memory and executive function in Wave 2 in those in the upper tertile compared with the lower tertile. Receiver operating characteristics (ROC) analysis was used to determine MIC‐1/GDF15 cutoff values associated with cognitive decline and showed that a MIC‐1/GDF15 level exceeding 2764 pg/ml was associated with a 20% chance of decline from normal to MCI or dementia. In summary, MIC‐1/GDF15 levels are associated with cognitive performance and cognitive decline. Further research is required to determine the pathophysiology of this relationship.  相似文献   
107.

Background and purpose

To evaluate the current status of radiotherapy facilities, staffing, and equipment, treatment and patients in Poland for the years 2005–2011 following implementation of the National Cancer Programme.

Methods

A survey was sent to the radiotherapy centres in Poland to collect data on available equipment, staffing, and treatments in the years 2005–2011.

Results

In 2011, 76,000 patients were treated with radiotherapy at 32 centres vs. 63,000 patients at 23 centres in 2005. Number of patients increased by 21%. In 2011, there were 453 radiation oncologists – specialists (1 in 168 patients), 325 medical physicists (1 in 215 patients), and 883 radiotherapy technicians (1 in 86 patients) vs. 320, 188, and 652, respectively, in 2005. The number of linear accelerators increased by 60%, from 70 units in 2005 to 112 in 2011. The current linac/patient ratio in Poland is 1 linac per 678 patients. Waiting times from diagnosis to the start of treatment has decreased.

Conclusion

Compared to 2005, there are more treatment facilities, more and better equipment (linacs), and more cancer care specialists. There are still large differences between the 16 Polish provinces in terms of equipment availability and ease of access to treatment. However, radiotherapy services in Poland have improved dramatically since the year 2005.  相似文献   
108.
109.
Many protein activities are driven by ATP binding and hydrolysis. Here, we explore the ATP binding proteome of the model plant Arabidopsis thaliana using acyl-ATP (AcATP)1 probes. These probes target ATP binding sites and covalently label lysine residues in the ATP binding pocket. Gel-based profiling using biotinylated AcATP showed that labeling is dependent on pH and divalent ions and can be competed by nucleotides. The vast majority of these AcATP-labeled proteins are known ATP binding proteins. Our search for labeled peptides upon in-gel digest led to the discovery that the biotin moiety of the labeled peptides is oxidized. The in-gel analysis displayed kinase domains of two receptor-like kinases (RLKs) at a lower than expected molecular weight, indicating that these RLKs lost the extracellular domain, possibly as a result of receptor shedding. Analysis of modified peptides using a gel-free platform identified 242 different labeling sites for AcATP in the Arabidopsis proteome. Examination of each individual labeling site revealed a preference of labeling in ATP binding pockets for a broad diversity of ATP binding proteins. Of these, 24 labeled peptides were from a diverse range of protein kinases, including RLKs, mitogen-activated protein kinases, and calcium-dependent kinases. A significant portion of the labeling sites could not be assigned to known nucleotide binding sites. However, the fact that labeling could be competed with ATP indicates that these labeling sites might represent previously uncharacterized nucleotide binding sites. A plot of spectral counts against expression levels illustrates the high specificity of AcATP probes for protein kinases and known ATP binding proteins. This work introduces profiling of ATP binding activities of a large diversity of proteins in plant proteomes. The data have been deposited in ProteomeXchange with the identifier PXD000188.ATP binding and hydrolysis are the driving processes in all living organisms. Hundreds of cellular proteins are able to bind and hydrolyze ATP to unfold proteins, transport molecules over membranes, or phosphorylate small molecules or proteins. Proteins with very different structures are able to bind ATP. A large and important class of ATP binding proteins is that of the kinases, which transfer the gamma phosphate from ATP to substrates. Kinases, and particularly protein kinases, play pivotal roles in signaling and protein regulation.The genome of the model plant Arabidopsis thaliana encodes for over 1099 protein kinases and hundreds of other ATP binding proteins (1, 2). Protein kinases are involved in nearly all signaling cascades and regulate processes ranging from cell cycle to flowering and from immunity to germination. Many protein kinases in plants are receptor-like kinases (RLKs), often carrying extracellular leucine-rich repeats (LRRs). The RLK class contains at least 610 members (3), including famous examples such as receptors involved in development (e.g. BRI1, ER, CLV1) and immunity (e.g. FLS2, EFR). Other important classes are mitogen-activated protein (MAP) kinases (MPKs) (20 different members), MPK kinase kinase kinases (MAP3Ks) (60 different members (4)), and calcium-dependent protein kinases (CPKs) (34 different members (5)). Because of their diverse and important roles, protein kinases have been intensively studied in plant science. The current approach is to study protein kinases individually—a daunting task, considering the remaining hundreds of uncharacterized protein kinases. New approaches are necessary in order to study protein kinases and other ATP binding proteins globally rather than individually.ATP binding activities of protein kinases and other proteins can be detected globally by acyl-ATP (AcATP) probes (6, 7) (Fig. 1A). AcATP binds to the ATP pocket of ATP binding proteins and places the acyl group in close proximity to conserved lysine residues in the ATP binding pocket. The acyl phosphonate moiety serves as an electrophilic warhead that can be nucleophilically attacked by the amino group of the lysine, resulting in a covalent attachment of the acyl reporter of the AcATP probe on the lysine and a concomitant release of ATP. The reporter tag is usually a biotin to capture and identify the labeled proteins. Labeled proteins can be displayed on protein blots using streptavidin-HRP. However, because AcATP labels many ATP binding proteins and protein kinases are of relatively low abundance, mass spectrometry is more often used to identify and quantify labeling with AcATP probes. The analysis is preferably done using Xsite, a procedure that involves trypsination of the entire labeled proteome, followed by analysis of the biotinylated peptides rather than the biotinylated proteins (8). This “KiNativ ” approach provides enough depth and resolving power to monitor ∼160 protein kinases in a crude mammalian proteome (7). Of the 518 human protein kinases (9), 394 (76%) have been detected via AcATP labeling (6).Open in a separate windowFig. 1.Structure and mechanism of labeling with BHAcATP. A, BHAcATP contains ATP, an acyl phosphate reactive group, and a biotin tag. When BHAcATP binds to the ATP binding pocket of a protein, the amino group of the nearby lysine reacts with the carbonyl carbon, which results in the covalent binding of the biotin tag to the protein while ATP is released. B, typical BHAcATP labeling profile of Arabidopsis leaf proteome. Arabidopsis leaf extracts were labeled with BHAcATP and the biotinylated proteins were detected on protein blots using streptavidin-HRP. Coomassie Brilliant Blue staining indicates equal loading. Asterisks indicate endogenously biotinylated proteins MCCA and BCCP. White, black, and gray arrowheads indicate bands containing ATBP+RBCL, PGK1, and a mix of ATP binding proteins, respectively. Abbreviations: MCCA, 3-methylcrotonyl-CoA carboxylase; BCCP, biotin carboxyl carrier protein; ATPB, chloroplastic ATPase; RBCL, ribulose-bisphosphate carboxylase; PGK1, phosphoglycerate kinase-1.KiNativ has mostly been used to validate targets of human drugs that target protein kinases using competitive labeling experiments. This approach has been used to identify selective inhibitors of, for example, Parkinson''s disease protein kinase LRRK2 (10), the BMK1 and JNK MAP kinases (11, 12), and the mTOR kinase (13). Importantly, the correlation of the biological activity of protein-kinase-inhibiting drugs with inhibitor affinity detected using KiNativ is better than that achieved when affinities are determined by assays using heterologously expressed protein kinases (7). This improved correlation illustrates that assays in the native environment provide a more realistic measure of protein kinase function.In addition to characterizing inhibitors selectively, AcATP probes can also display differential ATP binding activities of protein kinases. For example, labeling with AcATP probes during infection with dengue virus displayed a 2- to 8-fold activation of a DNA-dependent protein kinase (14) Similarly, AcATP labeling revealed an unexpected Raf kinase activation in extracts upon protein kinase inhibitor treatment (7). In conclusion, profiling with AcATP probes is a powerful approach for monitoring protein kinases and offers unprecedented opportunities to identify selective protein kinase inhibitors and discover protein kinases with differential ATP binding activities.In this work, we introduce AcATP profiling of plant proteomes. In addition to the analysis of labeled peptides, we characterized labeling using gel-based approaches and discovered that biotin is often oxidized in this procedure. We also performed an in-depth analysis of labeling sites in proteins other than protein kinases, which had not been done before. We discuss labeling outside known nucleotide binding pockets and investigate the correlation of labeling sites with protein abundance. We describe 63 labeling sites of known nucleotide binding pockets, of which 24 represent a remarkable diversity of protein kinases, including several LRR-RLKs. This work launches a new approach to study ATP binding proteins in plant science.  相似文献   
110.
Choristopsychidae, established by Martynov in 1937 with a single isolated forewing, is a little known extinct family in Mecoptera. Since then, no new members of this enigmatic family have been described. Based on 23 well-preserved specimens with complete body and wings from the Middle Jurassic of northeastern China, we report one new genus and three new species of Choristopsychidae, two new species of the genus Choristopsyche Martynov, 1937: Choristopsyche perfecta sp. n. and Choristopsyche asticta sp. n.; one new species of Paristopsyche gen. n.: Paristopsyche angelineae sp. n.; and re-describe Choristopsyche tenuinervis Martynov, 1937. In addition, we emend the diagnoses of Choristopsychidae and Choristopsyche. Analyzing the forewing length/width ratios of representative species in Mecoptera, we confirm that choristopsychids have the lowest ratio of forewing length/width, meaning broadest forewings. These findings, the first fossil choristopsychids with well-preserved body structure and the first record of Choristopsychidae in China, shed light on the morphology of these taxa and broaden their distribution from Tajikistan to China, while increasing the diversity of Mesozoic Mecoptera in China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号